

Welcome to the American College of Toxicology's Signature Webinar Series

With support from the Society of Toxicologic Pathology and the Teratology Society

Early Toxicology Studies – From Design to Dose Selection: What You Need to Know

Michael V. Templin, PhD, DABT Director, Scientific Advisory Services Charles River Laboratories

Scott E. Boley, PhD, DABT Vice President of Toxicology Sinclair Research Center

ACT Member Benefits

- Education and professional development focused on applied toxicology
- Professional networking
- Subscription to International Journal of Toxicology
- Access to interACT members-only community and online directory
- Access to online listings of professional positions in toxicology
- Participation in ACT's Mentorship Program
- Discounts on ACT signature events (Annual Meeting, training courses in drug development, pathology, and advanced toxicology)
- More ACT benefits can be found on the ACT website, here: <u>www.actox.org/aboutACT/benefits.asp</u>

Acute/Dose Range Finding (DRF) Studies

Developing a Nonclinical Program

Drug Development is often represented as defined steps in a process

Adapted from Andrade et al., Brazilian Journal of Medical and Biological Research (2016) 49(12): e5646, http://dx.doi.org/10.1590/1414-431X20165646

Objectives for Acute/DRF Studies

- 1. Primary objective to establish *dose-response* relationship
 - Intended pharmacology
 - Unintended/exaggerated pharmacology
 - Adverse effect/toxicity
- 2. Primary intent to enable dose selection and design of "regulatory" toxicology studies
 - Goal: expose the lowest number of animals to the highest severity of toxic effects
 - Insufficient data early in the program may require higher animal numbers later in the program

American College of Toxicology Signature Webinar

General Points for Consideration

- 1. Rodent first and non-rodent second vs. reality
 - Common practice to dose rodents prior to non-rodents
 - Scientific and ethical concerns
 - Rodent data can aid in dose selection and design of the non-rodent study
 - Rodent may not predict toxicity in a non-rodent species
 - Rodent may not be a relevant/appropriate species
- 2. Staggered approach for dose escalation
 - Dosing of one group followed by observation period before next dose level
 - Minimizes the number of animals "at risk"
 - Time interval between dosing can range from minutes, to hours, to days
 - Impacted by drug class, dose route, formulation, and pharmacokinetics

American College of Toxicology Signature Webinar

Study Design Considerations

- 1. Regulatory guidelines and recommendations
 - No guidelines specific to Acute/DRF studies
 - Multiple documents outline the importance of such studies
 - Descriptions of study design are vague.....
 - "appropriate animal numbers"
 - "appropriate species"
 - "appropriate dose range and sufficient study duration"
 - Ultimately it is the responsibility of the individual/development team to determine what is appropriate and sufficient
 - Unwritten rule data should provide a path forward, and not more data collection

American College of Toxicology Signature Webinar

Starting Dose and Dose Intervals

- 1. Selection of a starting (low) dose
 - No "one dose levels fits all" approach to dose selection
 - Starting dose not intended to result in overt toxicity
 - Balance starting too low with dose range to be covered
 - Review all available information to select a starting dose
 - Pharmacology studies (highest therapeutic dose)
 - Pharmacokinetic/metabolism studies
 - Literature/published information of similar compounds
- 2. Dose escalation (or decrease) plan
 - Half-log interval is a common default approach
 - 1, 3, 10, 30, 100, mg/kg

Slide 6

Formulations and "Inactive Ingredients"

- 1. Optimal for the acute/DRF study formulation to be the intended clinical formulation
 - Move forward with the best available
 - Utilize previous programs and common formulations
 - E.g., hydroxypropyl methylcellulose with or without a surfactant
 - Work closely with formulators to develop a near and long-term plan
 - Modest changes in formulation can have meaningful impact
 - Increased/decreased systemic exposure
 - Local tolerability can be influenced
 - "inactive ingredient" may not be silent components
 - Co-solvents and solubility agents in early discovery may not transfer into later stages
 - Published information may be available, but often needs a case-by-case review

Slide 7

Additional Considerations

- 1. Strain, age, and source of the animals
 - When possible match previous studies
 - Mouse pharmacology in specific strains or transgenic animals
- 2. Inclusion of clinical and anatomical pathology
 - Information provided can be essential for data interpretation
 - For rodent studies, this has a meaningful impact on animal numbers
- 3. Pharmaco- / Toxicokinetics
 - Standalone (dedicated) studies or include in Acute/DRF studies?
 - Don't forget the bioanalytical assays!

American College of Toxicology Signature Webinar

- 1. Dose escalation followed by repeat dose
 - Males and females included in data collection

	Dose	Main Stu	udy Animals]
Group	(mg/kg)	Male	Female	
1 (escalating)	Level 1	3	3	
2 (escalating)	Level 2	3	3]
3 (escalating)	Level 3	3	3	
				1
				-

Dose levels needed to dentify a maximal dose?

Number of animals needed for evaluation?

American College of Toxicology Signature Webinar

- 1. Dose escalation followed by repeat dose
 - Males and females included in data collection
 - Repeat dose to further establish MTD (or similar)

	Dose	Main Stu	dy Animals	
Group	(mg/kg)	Male	Female	
1 (escalating)	Level 1	3	3	
2 (escalating)	Level 2	3	3	
3 (escalating)	Level 3	3	3	
4 (repeat dose)	From escalating phase	5	5	

Higher N to increase confidence in the results

Single dose level for repeat dose tolerability?

American College of Toxicology Signature Webinar

- 1. Dose escalation followed by repeat dose
 - Males and females included in data collection
 - Repeat dose to further establish MTD (or similar)

	Dose	Main Stu	dy Animals
Group	(mg/kg)	Male	Female
1 (escalating)	Level 1	3	3
2 (escalating)	Level 2	3	3
3 (escalating)	Level 3	3	3
4 (repeat dose)	From escalating phase	5	5
5 (repeat dose)	TBD	5	5

Two dose levels, e.g., single dose MTD and lower dose

Total main study animals = 38

American College of Toxicology Signature Webinar

- 1. Dose escalation followed by repeat dose
 - Males and females included in data collection
 - Repeat dose to further establish MTD (or similar)
 - Include toxicokinetics to define the exposure-response relationship

	Dose	Main St	udy Animals	Тохісо	kinetics	
Group	roup (mg/kg)	Male	Female	Male	Female	Opportur
1 (escalating)	Level 1	3	3			for micro
2 (escalating)	Level 2	3	3			sampling
3 (escalating)	Level 3	3	3			alternativ
						_ to decrea
4 (repeat dose)	From escalating phase	5	5	[3 – 9]	[3 – 9]	animal
5 (repeat dose)	TBD	5	5	[3 – 9]	[3 – 9]	number

Slide 13

Total animals = 50 to 74

- 1. Single sex dose escalation approach
 - Males or females for dose escalation

	Dose	Main stu	dy Animals
Group (mg/kg)		Male	Female
1 (escalating)	Level 1	3 (male or female)	
2 (escalating)	Level 2	3 (male or female)	
3 (escalating)	Level 3	3 (male or female)	

Approach involves 9 to 12 animals (vs 18 for Example 1)

Confirm maximal dose in three animals of the opposite sex

Slide 14

- 1. Single sex dose escalation approach
 - Males or females for dose escalation
 - Multiple doe groups for repeat-dose phase

	Dose	Main stu	dy Animals
Group	(mg/kg)	Male	Female
1 (escalating)	Level 1	3 (male or female)	
2 (escalating)	Level 2	3 (male or female)	
3 (escalating)	Level 3	3 (male or female)	
3 (escalating)	Level 3	Dose opposite sex at Level 3	
4 (repeat dose)	From escalating phase	3	3
5 (repeat dose)	From escalating phase	3	3
6 (repeat dose)	From escalating phase	3	3

Higher number of animals and/or groups in the repeat-dose phase (when range better defined)

American College of Toxicology Signature Webinar

- 1. Single sex dose escalation approach
 - Males or females for dose escalation
 - Multiple dose groups for repeat-dose phase
 - Include toxicokinetic evaluation

	Dose	Main stu	ıdy Animals	Тохісо	kinetics	
Group	roup (mg/kg)		Female	Male	Female	
1 (escalating)	Level 1	3 (male	or female)			
2 (escalating)	Level 2	3 (male	or female)			
3 (escalating)	Level 3	3 (male	or female)			Opportunity
3 (escalating)	Level 3	Dose opposi	te sex at Level 3			to decrease
						animal
4 (repeat dose)	From escalating phase	3	3	[3 – 9]	[3 – 9]	numbers?
5 (repeat dose)	From escalating phase	3	3	[3 – 9]	[3 – 9]	
6 (repeat dose)	From escalating phase	3	3	[3 – 9]	[3 – 9]	Ų

Total animals = 48 to 102 (without third group = 42 to 78)

American College of Toxicology Signature Webinar

AND CONTRACTOR

Dog Acute/DRF – Example 1

- 1. Escalating dose involves 1 male and 1 female
 - Time interval between dose events ranges from hours to several days
- 2. Repeat-dose phase in an additional 1 male and 1 female
 - Option for a second dose group

	Dose	An	imals
Group	(mg/kg)	Male	Female
1 (escalating)	Level 1		-
	Level 2	1 male and 1 female	
	Level 3		

May allow for better dose selection for longer-term and/or definitive studies

Slide 17

4 to 6 animals total

Dog Acute/DRF – Example 2

- 1. Re-use of animals in repeat-dose phase
 - Escalating phase conducted as previously described
 - Transfer animals to repeat-dose phase; include an additional 1 male and 1 female •
 - Option to include a second dose group

American College of Toxicology Signature Webinar

NHP Acute/DRF – Example 1

- 1. Escalating dose in 1 male and 1 female
 - Time interval between dose events ranges from 1 to several days
 - Design used for small molecules and specific large molecules

	Dose	An	imals	
Group	(mg/kg)	Male	Female	
	Level 1			
1 (escalating)	Level 2	1 male and 1 female		
	Level 3			
2 (repeat dose)	From escalating phase	1	1	
3 (repeat dose)	From escalating phase	1	1	

Similar questions and points for consideration as those outlined for rat and dog

- 1) Dose levels for escalating phase?
- 2) Feasibility of using escalating dose animals in repeat-dose phase?
- 3) One or two dose levels in repeat-dose phase?

NHP Acute/DRF – Example 2

- 1. Dose escalation and range finding for biologics (or similar compounds)
 - Escalating phase completed with dedicated animals in each group/dose level

	Dose	Animals	
Group	(mg/kg)	Male	Female
1 (escalating)	Level 1	1	1
2 (escalating)	Level 2	1	1
3 (escalating)	Level 3	1	1

May require 6+ animals to achieve dose escalation

With biologics, escalation in the same animals may not be feasible/appropriate

- 1) Long half-life of drug (PK)
- 2) Extended duration of effect (PD)
- 3) Potential for anti-drug antibodies

Slide 20

NHP Acute/DRF – Example 2

- 1. Dose escalation and range finding for biologics (or similar compounds)
 - Escalating phase completed with dedicated animals in each group/dose level
 - Repeat dose in dedicated animals for each group/dose level

	Dose	An	imals
Group	(mg/kg)	Male	Female
1 (escalating)	Level 1	1	1
2 (escalating)	Level 2	1	1
3 (escalating)	Level 3	1	1
4 (repeat dose)		1 - 2	1 - 2
5 (repeat dose)		1 - 2	1 - 2

Single or multiple dose level for repeat-dose phase?

Careful evaluation of animal use for robust data set with minimal numbers

American College of Toxicology Signature Webinar

Summary and Conclusions

- 1. Acute/DRF studies are a critical step in the nonclinical plan
 - Essential bridge between research and regulatory studies
 - Provide context for risk (toxicology) vs benefit (pharmacology)
- 2. No set guidelines/recommendations for design of Acute/DRF studies
 - Identify the key questions or concerns to select a "best design" or approach
 - The 3R's principle is relevant for specific studies and the program overall
- **3**. Primary intent is dose selection for regulatory studies
 - The dose **range** is an important consideration
 - Low, middle, and high are relative terms with specific values
 - Each dose level has an objective and function in the nonclinical program

American College of Toxicology Signature Webinar

Dose Level Selection and Justification

You Have Picked the Perfect Design

- How do I select a dose level?
 - Where do I start?
 - How high do I go?
 - If all I have is mouse data how do I pick a rat dose?
 - If all I have is rodent data, how do I pick a non-rodent dose?
- The universal answer of a regulatory toxicologist
 - It depends

American College of Toxicology Signature Webinar

Selecting/Changing Dose Levels

- Factors to be considered
 - What is the test article type?
 - Small molecule
 - Biopharmaceutical
 - Dose route
 - Oral, IV, SC, IM, ...
 - Physical characteristics of the test article
 - Soluble in aqueous or organic

American College of Toxicology Signature Webinar

Everything Is a Poison

- Poison is in everything, and no thing is without poison.
- The dosage makes it either a poison or a remedy.
 - Paracelsus

https://upload.wikimedia.org/wikipedia/commons/4/4a/Paracelsus.jpg

Slide 4

Objective of a High Dose – Small Molecule

- In early studies
 - Start with a reasonably safe dose
 - Define the upper range of toxicity, and establish an MTD
 - Can be subjectivity around what constitutes an MTD
- In IND-enabling studies
 - Top dose should demonstrate toxicity and can be adverse
 - Define a No Observed Adverse Effect Level (NOAEL), Severely Toxic Dose (STD10 rodents), or Highest Non Severely Toxic Dose (HNSTD – non-rodents)
- In Phase 2/3/registration studies
 - Same as for IND studies
 - Define a NOAEL

American College of Toxicology Signature Webinar

How do I Select a Dose between Species?

- How do you select a dose when going from rats to dogs
 - Use of body surface area mg/kg to mg/m²

	Conversion
Mouse	3
Rat	6
Dog	20
Cyno	12
Minipig	35

- Example dose of 150 mg/kg in rats, want to dose dogs
 - 150 mg/kg * 6 = 900 mg/m²; 900 mg/m² divided by 20 = 45 mg/kg

American College of Toxicology Signature Webinar

Reaching a High Dose – Small Molecule

- How do you get from a starting dose to the high dose
 - Various means are employed
 - Half log is commonly used
 - Other means are also used
 - · What is observed at a given dose
 - What is the route of administration
 - What is known about class effects/pharmacology

American College of Toxicology Signature Webinar

High Dose Justification – Small Molecule

- For the initial dose range finding (DRF) studies, how do you know you have achieved a top dose?
 - Per the ICH guidelines ICH M3(R2)
 - Maximum tolerated dose (MTD)
 - Limit dose
 - Maximum feasible dose (MFD)
 - Saturation of exposure
 - 50X clinical exposure

American College of Toxicology Signature Webinar

High Dose Justification – Small Molecule

- Maximum Tolerated Dose
 - Dose limiting toxicity which is significant toxicity up to and including mortality, prostration, convulsions etc.
- Limit dose (no MTD)
 - High dose of 1000 mg/kg
 - Provided you have 10X clinical exposure, or
 - Clinical dose is < 1g/day
 - High dose of 2000 mg/kg or MFD, whichever is lower
 - If clinical dose is > 1g/day and 1000 mg/kg does not generate 10X clinical exposure
 - High dose of MFD
 - If clinical dose is > 1g/day and you do not have 10X clinical exposure at 2000 mg/kg

Slide 9

High Dose Justification – Exposure

• Exposure is generally reported as a function of plasma concentration.

Bogdanffy MS. ACT Meeting 2016, Baltimore.

American College of Toxicology Signature Webinar

High Dose Justification – Small Molecule

- Other justifications
 - MFD
 - · Need to explore at least 3 formulations
 - Saturation of exposure
 - Can be difficult to demonstrate
 - May need to look at BID/TID to support saturation
 - 50X clinical exposure
 - Need clinical data or robust modeling
 - Based on active entity
 - Applies to AUC at maximal clinical dose

Slide 11

American College of Toxicology Signature Webinar

Slide 13

Adapted from ICH M3 (R2)

High Dose Justification – Biopharmaceutical

- Per ICH guidance ICH S6(R1)
 - Covers peptides, antibodies, antibody-drug conjugates, proteins, etc.
- Not necessarily targeting a MTD
 - Does not mean you can't have toxicity
 - Typically exaggerated pharmacology
- High dose the greater of these
 - Dose that induces a maximum pharmacological effect
 - Doses providing a 10-fold margin over maximum clinical exposure

American College of Toxicology Signature Webinar

Summary

- Regulatory toxicology is not easy or straightforward
 - But it is interesting and challenging
- Guidance documents are available and should be familiar to SDs
 - Covers both small molecules and biopharmaceuticals
 - Dose level justification is contingent on a number of factors
 - Studies are conducted in a series and build upon each other
 - Ultimate goal is to understand the potential toxicity of the test article to the people involved in the clinical trials
- Institutional Animal Care and Use Committees should also be familiar with these guidance documents

American College of Toxicology Signature Webinar