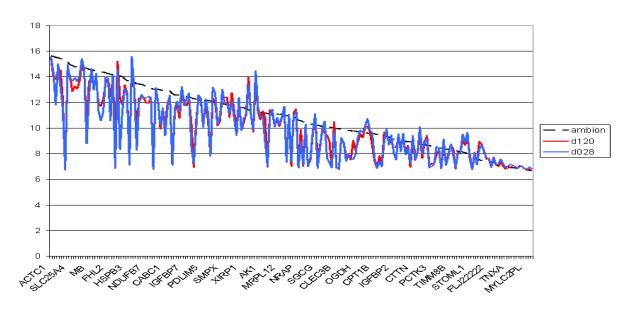


Use of Stem Cell-derived Cardiomyocytes in Safety Assessment and Drug Discovery

Kyle Kolaja

The Potential of iPS Cells: Genetic Diversity

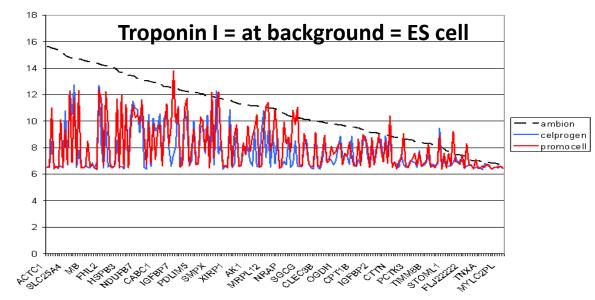
Human Footprint free method Gene editing/engineering Made from anyone


M. Rossbach

iCell Cardiomyocytes are more similar to Adult Human Heart Samples than Primary Cultures

CDI cells d28 and d120

Primary Heart cultures



Primary isolation of organs/tissues/cells

>100 years since Harrison first cultured frog neurons
>60 years since Gey first immortalized human cell line (HeLa)
Immeasurable innovations, advancements, and knowledge

Yet, cell culture limitations havent changed much and prevented the ultimate potential of replacing animal and human experiments Variability of isolation, timing, etc

Degeneration of phenotype with time

Primary Human Cells

Transformed Cell Lines

Quality Manufacturing and Broad Access Lead to Scientific Progress

Robust manufacturing = enterprise wide quality management system

- Defined media and control of components
- Substrate shift from feeder layers to recombinant proteins
- Control of process from start to finish
- Automation

Successful, broadly used items become commercialized → ACCESS

- Media and substrates above
- Micro-arrays great example
 - Academia Govt Industry
 - Homemade to QC product

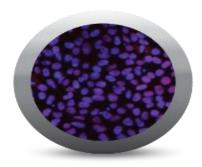
Journal of Biomedical Discovery and Collaboration

Open Access

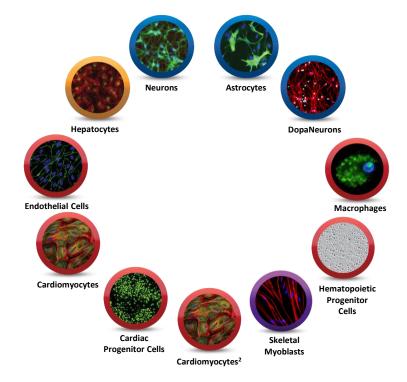
Case Study

The emergence and diffusion of DNA microarray technology Tim Lenoir*† and Eric Giannella[†]

Addrom Jankine Collaboratory for New Tochard ogior in Society, Duke University, John Hope Franklin Canter, 2204 Envin Rood, Durbarn, North Carolina 27708-0402, USA


Email: "Fim Lanoir" - lanoir@duke.edu: EricGannella - arie.giannella@duke.edu "Carrosponding authar - †Equal contributors

Key Systems	Objectives
QA/QC	Compliance and product consistency
Standard Operating Procedures	Consistent procedures
Calibration/Qual/Val	Equipment/facilities/processes fit for intended use
Change Management	Changes are documented, assessed for risk, and tested
САРА	Report, correct, and prevent product quality issues
Supplier Qual & Mgmt	Quality and reliability of raw materials
Materials Management	Control, trace, and monitor stock inventory
Training	Education and proficiency
Complaint Handling	Customer satisfaction and continuous improvement
New Product Introduction	Improve likelihood that product meets market need


Standardization through Quality, Quantity and Purity:

Induced Pluripotent Stem Cells

Scale-Up Manufacturing

- Quality
- Quantity
- Purity

- 1000's of individuals
- Billions of cells

CALIFORNIA INSTITUTE FOR REGENERATIVE MEDICINE The State Stem Cell Agency

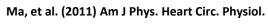
National Heart, Lung, and Blood Institute

Stem Cell Derived Cardiomyocytes Are the Standard for In Vitro Cardiac Research

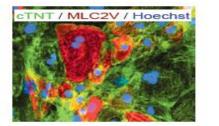
• First stem cell derived cell type

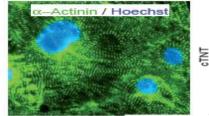
Used in regulatory filings to support claims

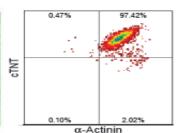
Proof of comparability (+) established


- Gene expression
- Morphology
- Electrophysiology and contractility
- •Biochemical properties
- •Functional (pharm and tox)

• Major opportunity in arrhythmia detection, but ample applications in pharmacology, toxicology, and disease biology research

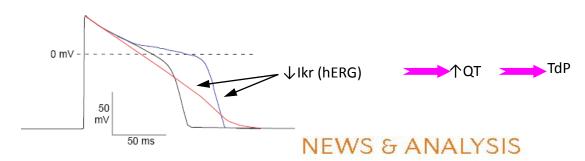

Endpoint	Platform(s)
Viability	Cell-based assays, HCI
Mitochondrial health	Cell-based assays, HCI
Oxidative stress	Cell-based assays
Bioenergetics	Seahorse XF-Analyzer




Babiarz, et al. (2012) Stem Cells & Development.

E-4031 30 nM

Fear of Arrhythmia #1 reason for discovery and development attrition

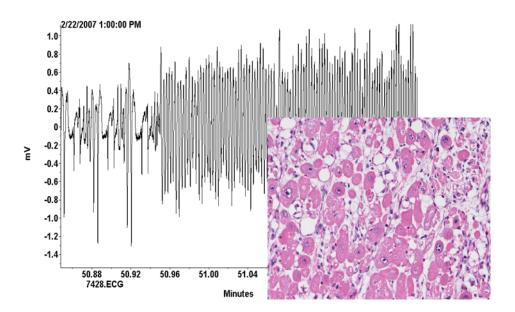

- ~10 drugs pulled from market based on torsades de pointe
- Regulatory Guidance documents ICH7A and 7B proscribe a new host of cardiovascular safety approaches
 - hERG screening ex vivo preps in vivo animal models ECGs Thorough QTc trials

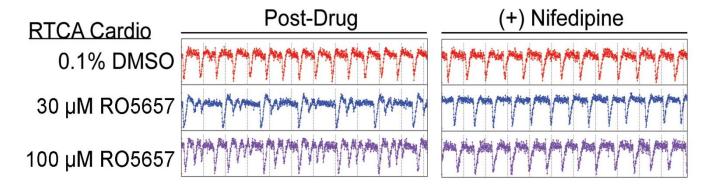
• Two consequences –

- no drug induced torsades
- a lot of beneficial drugs not marketed

• Early screening relies heavily on hERG

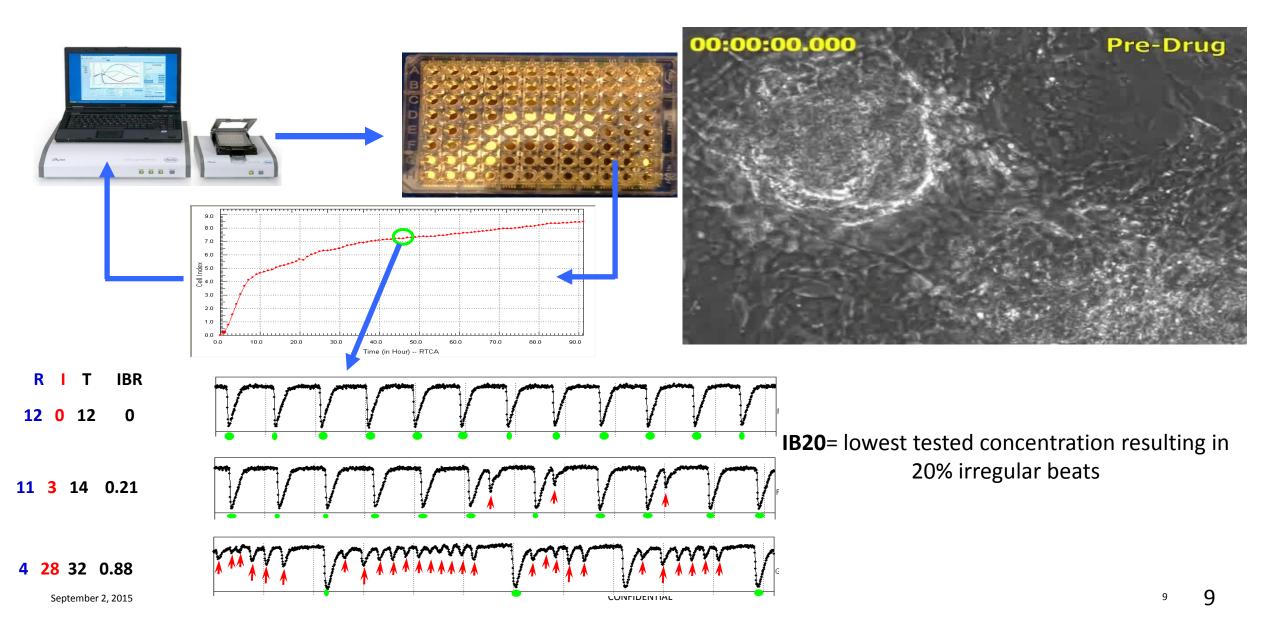
- hERG block ≠ QT prolongation
- hERG block ≠ arrhythmia
- QT prolongation ≠ arrhythmia
- Arrhythmia can be independent of hERG
- Cardiovascular safety and regulations could be better
 - HESI and CIPA





Revolution dawning in cardiotoxicity testing Shercelline has begrand computational modelling offers he promise of reducings here unemburden of cardioexicity assessment.

Torsades induction in Cynomolgus Monkey reproduced in Vitro



Guo et al. Toxicol Sci. 2011 Sep;123(1):281-9.

Misner et al Br J Pharmacol. 2012 Apr;165(8):2771-86.

Human Cardiomyocytes Arrhythmia Risk (hCAR) Model with iCell CMs

hCAR Assay Validation:

23 Commercially available compounds with know in vivo effect

	Drug	IB20 (μM)	hERG	QT	Clinical arrhythmia	
	Dofetilide	0.003	(+)	(+)	(+)	
•12 Pro-arrhythmic	Ouabain	0.03	(-)	(-)	(+)	
-	Aconitine	0.03	(-)	(-)	(+)	┢
 11 Non-arrhythmic 	Cisapride	0.03	(+)	(+)	(+)	
• IB20 30 uM	E-4031	0.03	(+)	(+)	(+)	
	Astemizole	0.03	(+)	(+)	(+)	
•One False Positive	Terfenadine	0.3	(+)	(+)	(+)	
 No False Negatives 	Flecainide	1	(+)	(+)	(+)	
No ruise regulives	Alfuzosin	1	(-)	(+)	(-)	
	Thioridazine	3	(+)	(+)	(+)	
	Quinidine	10	(+)	(+)	(+)	
	Erythromycin	30	(+)	(+)	(+)	
	Sotalol	30	(+)	(+)	(+)	
	Fluoxetine	>30	(+)	(+)	(-)	
	Verapamil	>30	(+)	(±)	(-)	
	Moxifloxacin	>100	(+)	(+)	(+)	
IB20= lowest tested	Amiodarone	>100	(+)	(+)	(<u>+</u>)	
	Ranolazine	>100	(+)	(+)	(-)	
concentration resulting in 20%	Captopril	>100	(-)	(-)	(-)	
irregular beats	Rofecoxib	>100	(-)	(-)	(-)	
incgular beats	Amoxicillin	>1000	(-)	(-)	(-)	
	Aspirin	>1000	(-)	(-)	(-)	
	Nifedipine	>3	(-)	(-)	(-)	

Guo et al. Toxicol Sci. 2011 Sep;123(1):281-9.

Human Cardiomyocytes Arrhythmia Risk (hCAR) Model 2nd Paper - Next Round of Validation

(H)

(-1)

(H)

(+1)

(-1)

(+1

(+1)

(-1)

(+1)

(H)

(-).

(+1)

(-)

(+1)

(+)

(+1)

(-)

(H)

 (\pm)

(H)

(H)

(-)

(H)

(H)

(+1

(H)

(-)

(-)

(±)

(-)

(-)

(H)

(+). (-1)

(H)

(H)

(H)

(H)

(H)

(H)

(F-1)

(H)

(H)

(H)

(-1)

(±.)

(+1)

(-).

(H)

(H)

(-)

(+1)

(+ m

(+1)

 (\bullet)

(±1)

(-1)

(H)

(H)

(-1)

(H)

(-)

(H)

(-1)

(±.)

(-1)

(-)

(-) (-)

(-)

(-)

(-1) (+1)

(-1)

(H)

(-1)

(H)

(H)

(H)

(H)

Drug	С _{ий} (пМ)	lB _≥ (μM)	4nerg	1QT	TdP	_	in viv	O ECG		
Digitorin	33	0.003	(-)*	(-)	(•)*	- 20	C/ do sporin A	1,458	100	hERG
Dofetillde	6	0.003	(+)	(+)	(+)		Lidocalne (i.v.)	36,000	100	6
Digosin	3	0.01	(-f	(-)	(+)*	••	Pimobendan	16.4	100	- i
Ousbain	170	0.01	(-#	(-)	(+ Yr	_	Ranolazine	6,0.05	100	6
Aconitine	77	0.03	(-)	(-)	(+ Y	3	Nifedipine	194	≻3	1
A∎temi zole	8	0.03	(+)	(+)	(+)	3	Amitriptyline	793	≻30	
E-4031	13	0.03	(+)	(+)	(+)	_	Bepridii	3,298	≻30	6
Pimozide	217	0.1	(+)	(+)	(+)	3	Ce tiri zine	800	≻30	
Serntidole	3 18	0.1	(+)	(+)	(+)	0	Cibe n zoline	2, 16 8	≻30	
Claspride	129	0.3	(+1)	(+1)	(+)	•	Daitampridine	493	≻30	f
Geldanam yoʻin	16,200	0.3	(- 1	(-)	(+)*	0	Diitta 29 m	5 5 2	≻30	
ida rubic in	123	0.3	(-)	(+)	(+ Y)	0	Dipineniny dramine	157	≻30	
Terfenadine	30.0	0.3	(+)	(+)	(+1)		Ruoroursell	4,613	≻30	f
Altuzorin	56	1	(-)	(+)	(-)	0	Fluo se tine	485	≻30	f•
Dobutamine	3,819	1	(+)	(-)	(-)	0	im ipramine	1,070	>30	
Dosorubicin	15,344	1	(-)	(+)	(+ Y)	_	Ke tocoria zole	17 ,6 89	≻30	
Flecalnide	1,93 1	1	(+1	(+1)	(+1)	- 10	Loratadine	23	≻30	
Pentamidine	2, 18 1	1	(-) ⁶	(+)	(+)	10	Nitrendipine	150	≻30	f
Tacrine	100	1	(-)	(-)	(-1)	-10	Olan zipi ne	74	≻30	
Ampinotericin B	89.8 18	3	(-)	(+1)	(+ Yh)	- 10	Rouigits zone	1,673	>30	f
Artenic Triotide	12,132	3	(-f	(+)	(+)	10	Troglitazone	6,387	>30	f
Clozapine	1	3	(-)	(+)	(±)		Verapam I	8 15	>30	
Mitosantrone	3,311	3	(-)	(+)	(+)*	- 10	Ace tam idopinenci	130,000	> 10 0	
Prenylamine	70	3	- ĕ	(e)	ι.	10	Albidem	28.4	> 10 0	
Sunitinio	2 5 3	3	(+)	(+1	(+1)	-	Amilodarone	3.874	≻100	
Thiorida zine	1,781	3	(+1	(+1	(+1	30	Atenolol	1,284	> 10 0	- F
Zimelidine	328	3	(+)	(±)	(±.)	0	Captopril	2,466	≻100	- (
Ajmaline (l.v.)	10 5	10	(+)	(+)	(+)	10	Colcincine	16	≻100	(
Chilorp romazine	2,630	10			- (e) - (e)	-10	C; clopino spina mide	153,200	≻100	
Clarithromycin	6,029	10	(+)	(+)	(+1		De sna 20 s але	136,052	> 10 0	
Dantrolene	7,500	10	(-)	(-)	(-)					
De lipramine	60 1	10	(+)	(+)	(+)	10	Le voeimendan	136	> 10 0	
Epirubicin	16,036	10	(-)	(+1	(+ 11	- 10	Mechlorethamine	2	>100	
Ne ta zodone	4,898	10	(+)	(+1	(-)		Mosifiosacin Nime sulide	10.276	>> 100 >> 100	
Pitentolamine	100	10	(-)	(-)	(-)	10	Pemoline	6,925	>100	
Quinidine	21,578	10	(+)	(*)	(+)		Rofecosib	1,021	>100	
Ery throm yoin (i. v.)	34,064	30	(+1	(+1	(+1	01	Тоісаропе	21,959	>100	
Fluvosam ine	1,257	30	(+1	(-)	(-)	0	Zaicitabine	1 19	>100	
matinib	3,541	30	(-)	(+)	6		Amoticilin	17,036	>100	
Metiletine	11,161	30	(+)	(-)	6	- U	Alipirin	10,000	>100	
Ргоратепопе	4,827	30	(+1	(+)	(+1	30			- 1	4.9 '
Propranolol (I. v.)	19 3	30	(-)	(+1	(-)	_				
Sotalol	14,7 33	30	(+)	(+)	(+)	-00	-	-	-	30
			27	>100	1 2	2 1 0	0 - 0	-	-	4.0
			28	>100	>	> 10	0 -	-	-	4.3
			29	>100	>	> 10	0 -	-	-	30
		-	30	>100		> 10			1	>300

83 Compounds

~82% -- arrhy. prediction >90% -- QT prediction

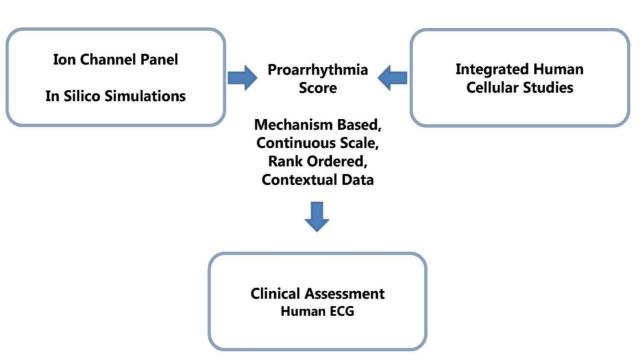
30 Internal Compounds

80% -- arrhy. prediction 95% -- QT prediction

Comprehensive In Vitro Proarrhymia Assay

Objective:

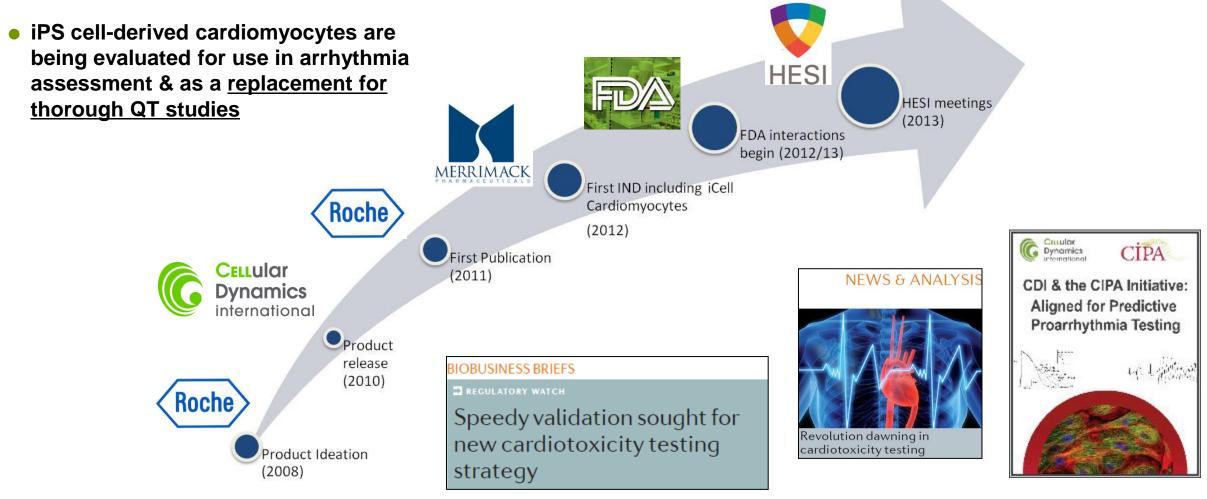
- Facilitate the adoption of a new paradigm for assessment of clinical potential of TdP that is not measured exclusively by potency of hERG block and not at all by QT prolongation.
- CIPA is envisioned to ultimately require modification or replacement of the existing ICH S7a/b guidelines and elimination of E14 guidelines.


Anticipated Final Outcome:

 Eliminate the need for a TQT study for compounds entering clinical development with a negative dataset based on the newly proposed in vitro and in silico paradigm

CIPA Partners:

 USU FDA, HESI, CSRC, SPS, EMA, Health Canada, Japan NIHS, PMDA



iCell Cardiomyocytes: Development → Regulatory Guidance

• Product launch \rightarrow regulatory utility in <u>3 years</u>

Nature Reviews Drug Discovery (Aug, Sept 2013) Nature Reviews Drug Discovery (Aug, Sept 2013)

Electrical and Structural Toxicity are Inter-related – Key is to Determine Mechanistic Driver

- •Jaspamide potential cancer therapeutic agent
 - •a cyclodepsipeptide (marine sponge Jaspis johnstoni)
 - •Affects actin binding to cytoskeleton
 - •Pulmonary edema /cardiac hemorrhage /congestion in tox species
 - •inhibited Kv1.5 activity by 98.5%. inhibited Cav1.2, Cav3.2, and HCN2;

•but not a hERG blocker

•Induced arrhythmic beats in vitro in stem cell derived CMs

- Sunitinib multi-targeted inhibitor oncology
 - cardiac dysfunction and cardiotoxicity (CHF)
 - potently cardiotoxic in stem cell derived cardiomyocytes
 - •AMPK inhibited but no attenuation
 - •Inhibit hERG, Ca++ cycling and NaV1.5 -> arrhythmia
 - arrhythmia and cytotoxicity in stem cell dervied CMs

hIPSC- CMs ideal model to assess cardiotoxicity, electrophysiology and contractility effects in parallel

•R5657

- •CCR5 antagonist, mild hERG inhibitor (IC 50 = 12 uM)
- •Myofiber loss and morbundity in 2 monkeys
- •Expanded telemetry study showed only torsades, no cardiac tox.
- •Stem cell derived CMs show arrhythmia and no cytotoxicity

• Multi-factorial combination of cytotoxicity, cardiac conduction abnormalities, hypoxia, suppressed response/accommodation mechanisms

RESEARCH PAPER Investigation of mechanism of drug-induced cardiac injury and torsades de pointes in cynomolgus monkeys

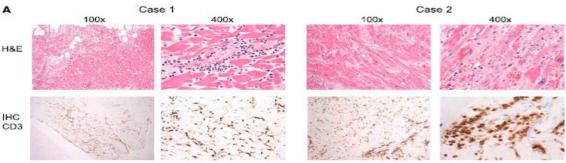
	Toxicology in Vitro	
- C.		5
ELSEVIER	journal homepage: www.elsevier.com/locate/toxinvit	_

Karen Schweikart **, Liang Guo^b, Zachary Shuler^b, Rory Abrams ^b, Eric T. Chi Myrthe Davis ⁵ Development Interventin Progrem, Network Court Institute, Networks MD 2002, Onted Setus

NTIAL

Jse of human stem cell derived cardiomyocytes to examine sunitinib mediated ardiotoxicity and electrophysiological alterations D. Cohen ^a, J.E. Babiarz ^a, R.M. Abrams ^a, L. Goo ^a, S. Kameoka ^a, E. Chiao ^a, J. Taunton ^b, K.L. Kolaja ^{a,a} *infrared menaging tight, mediate later forthema to the first alterative tights. Theory of 100 March and the compared to the start of the start of the start alterative tights. Theory of the start of the start to the start of the start of* 15

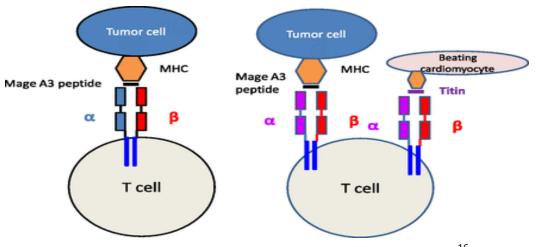
15


Off Target Cellular Gene Therapy Targeting MAGE A3 – Toxicity due to Titin-cross reactivity

- Modified T cell to increase affinity to MAGE 3A receptor, a putative tumor antigen
- Phase I trial 2 patients died of cardiogenic shock and fever
 - Ventricular myofiber loss with infiltrate
 - MAGE 3A not expressed on heart samples
 - No toxicity in preclinical toxicity studies
- Bioinformatic modeling to detect off target recognition of titin, a protein that is a component of striated muscle
 - only expressed in beating cells
 - not expressed in static primaries
 - 1uM long, largest protein in body, 3rd most abundant, 0.5 kg/person

T cells expressing the affinity-enhanced TCR but not wild type were toxic to **IPSC-CMs**

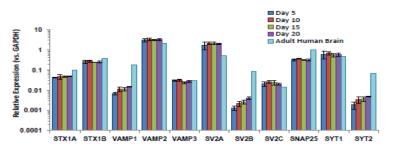
- •2 Main points
 - Affinity enhancing T cells may create unintended targets
 - •Complex development programs need to test toxicity in human models


......

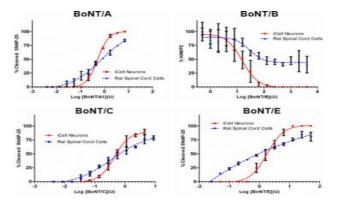
Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma

Gerald P. Linette,¹ Edward A. Stadtmauer,² Marcela V. Maus,² Aaron P. Rapoport,³ Bruce L. Levine,² Lyndsey Emery,² Leslie Litzky,² Adam Bagg,² Beatriz M. Carreno,¹ Patrick J. Cimino,¹ Gwendolyn K. Binder-Scholl,⁴ Dominic P. Smethurst,⁴ Andrew B. Gerry,⁴ Nick J. Pumphrey,⁴ Alan D. Bennett,⁴ Joanna E. Brewer,⁴ Joseph Dukes,⁵ Jane Harper,⁵ Helen K. Tayton-Martin,⁴ Bent K. Jakobsen,^{4,5} Namir J. Hassan,⁵ Michael Kalos,² and Carl H. June²

Steman Cancer Center and Departments of Medicine and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO; in Cancer Center, Department of Medicine, and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelp ³The Greenebaum Cancer Center, University of Maryland, Baltimore, MD: ⁴Adaptimmune Ltd. Philadelphia and Abinodon, United Kinodom; and ⁴ Immunocare Ltd., Abingdon, United Kingdom


Stem Cell Derived Cortical Neurons and Toxicology – Potency Release Assay

BoNT Receptor Protein Expression



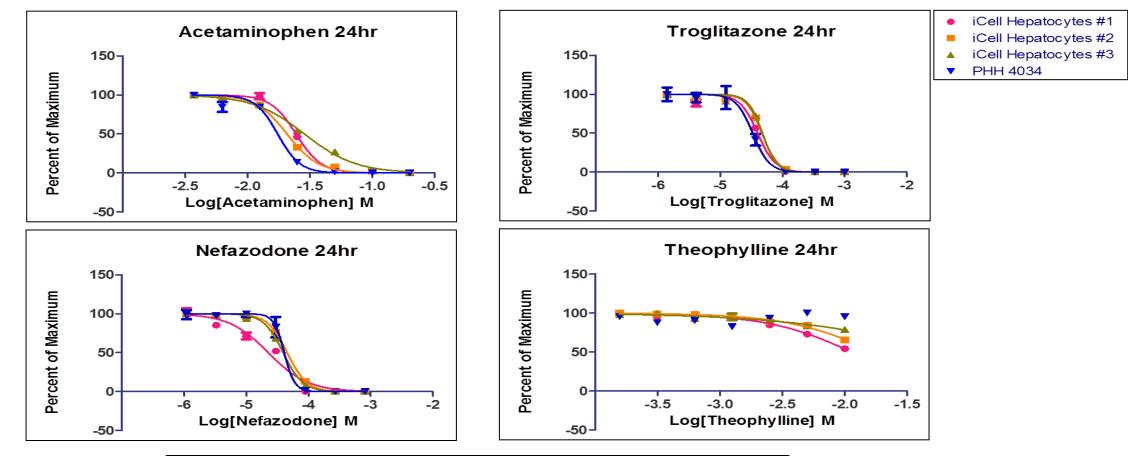
- iCell Neurons express the receptors and enzymatic targets necessary for BoNT cell entry and catalytic activity
- iCell Neurons reproducibly show equivalent or greater sensitivity to BoNT activity vs. rat spinal cord cells

BoNT Receptor Gene Expression

BoNT Receptor Cleavage

 Assess the potency of botulinum neurotoxin (BoNT) better than rat spinal cord neurons or mouse LD50.

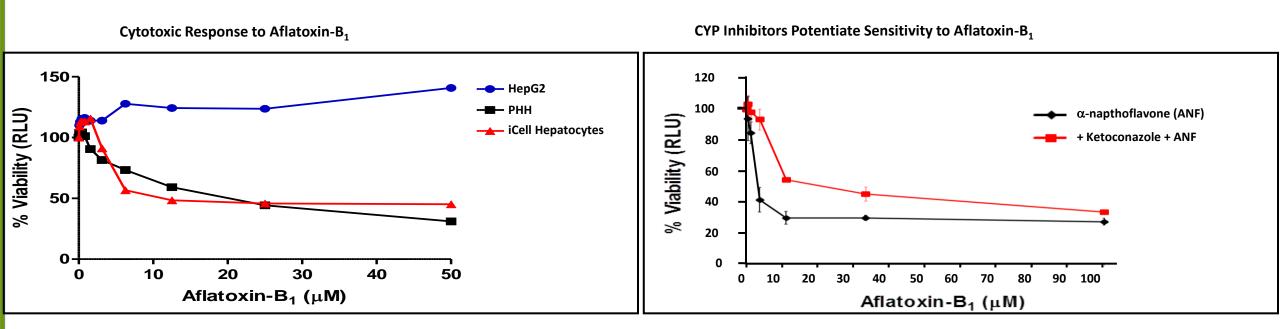
• a consortium of BoNT manufacturers is in the process of validating the use of Stem Cell derived Neurons to replace the current industry "gold" standard, a high-cost and labor-intensive in vivo bioassay.


Novel Application of Human Neurons Derived from Induced Pluripotent Stem Cells for Highly Sensitive Botulinum Neurotoxin Detection

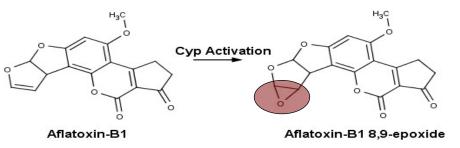
Regina C. M. Whitemarsh,* Monica J. Strathman,† Lucas G. Chase,* Casey Stankewicz,† William H. Tepp,* Eric A. Johnson,* and Sabine Pellett*.1

*Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin 53706 and †Cell Biology Group, Cellular Dynamics International, Inc., Madison, Wisconsin 53711

Stem Cell Derived Hepatocytes and Toxicology

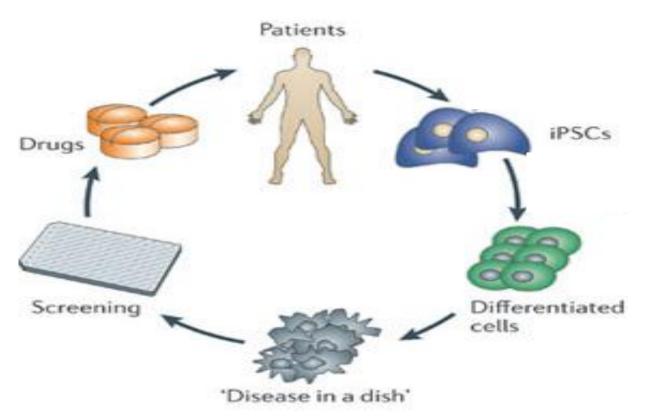


	iCell H	Cs	РНН	
Compound	EC50 (AVG mM) EC50/CMax		EC50 (mM)	EC50/CMax
Acetaminophen	25	55.4	17.4	39.3
Troglitazone	0.045	2.0	0.033	1.5
Nefazodone	0.036	4.2	0.041	4.8
Theophylline	>10	>100	>10	>100



iCell Hepatocytes

Hepatoxtocity via Metabolic Activation - Aflatoxin

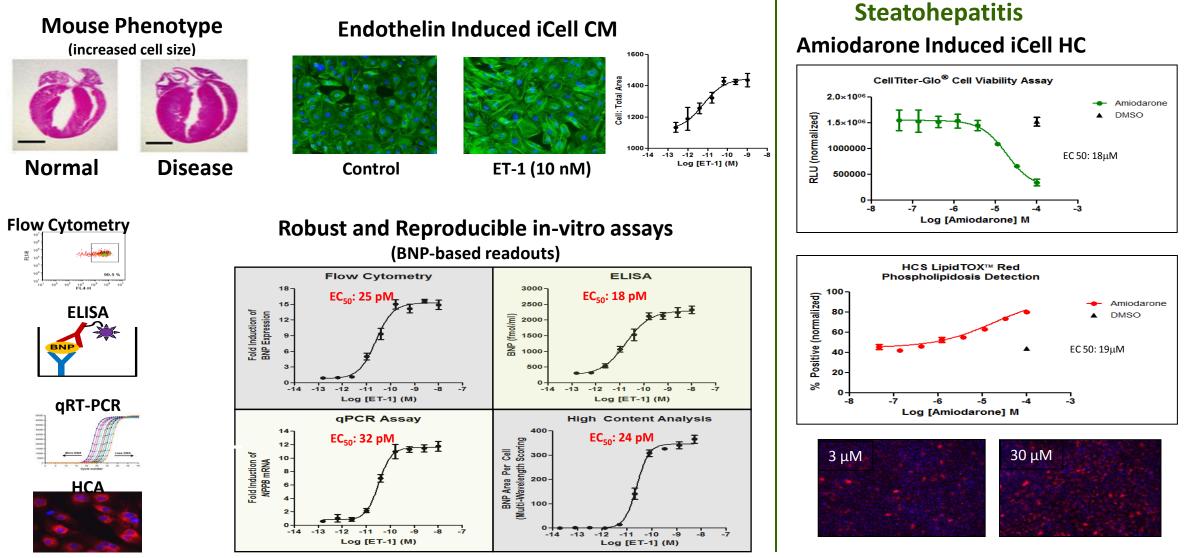


Evidence of CYP Mediated Conversion to Reactive Toxic Aflatoxin Epoxide

'Disease in a Dish" Modeling Human Disease using iPSCs

iPSC technology can be used to model human <u>Innate</u>, <u>Induced</u> and <u>Infectious</u> diseases that cannot be interrogated using conventional cell lines, primary cells or animal models

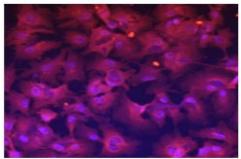
Adapted from Grskovic, et al. (2011)

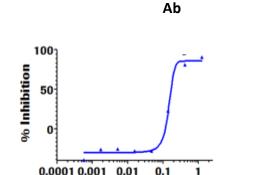

Reviews & summaries of disease-specific iPSCs created:

- Grskovic, et al. (2011) Nature Reviews Drug Discovery
- Rajamohan, et al. (2012) Bioessays
- Trounson, et al. (2012) Current Opinion Genetics & Development

Induced Disease Modeling

Cardiac Hypertrophy

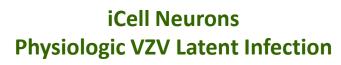


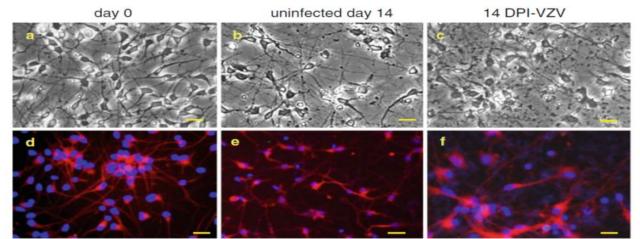

Infectious Disease Modeling

Inhibition of HCVpp Uptake by anti-CD81

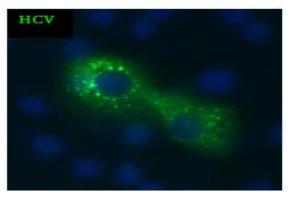
iCell Hepatocytes HCV Infection (Clinical Genotypes)

Luc Expressing HCV pseudoparticle (HCVpp) uptake

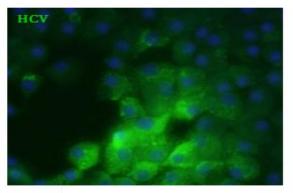


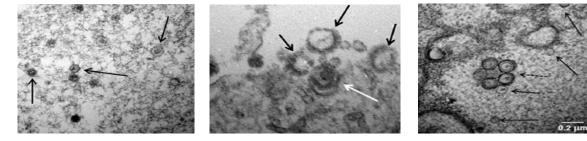


Drug conc. (µM)


HCVpp encoding Firefly luciferase

iCell Hepatocytes are Susceptible to Multiple HCV Genotypes




VZV infection did not produce a cytopathic effect

HCVcc - Cell Culture Passaged Virus (Genotype 1a/2a)

Patient Serum HCV (Genotype 1a)

Viral Particles and Capsids in iCell Neurons

Yu, et al. (2013) J Neurovirology

iPS Cell Disease Lines with Phenotypes

Neuronal Diseases

Amyotrophic lateral sclerosis Spinal muscular atrophy Olivopontocerebellar atrophy Parkinson's disease Huntington's disease Down's syndrome Fragile X syndrome Friedrichs Ataxia Familial dysautonomia Rett's syndrome Mucopolysaccharidosis type IIIB Schizophrenia X-linked adrenoleukodystrophy childhood cerebral ALD Adrenomyeloneuropathy Autism spectrum disorders Angelman syndrome Pradder-Willi

<u>Skin</u>

Recessive dystrophic epidermolysisbullosa

Eye

Retinitis pigmentosa Age-related cataract Gyrate atrophy

<u>Multi-organ</u>

Down syndrome - Trisomy 21 Shwachman-Bodian-Diamond syndrome Dyskeratosiscongenita

Current status of drug screening and disease modelling in human pluripotent stem cells

Divya Rajamohan, Elena Matsa, Spandan Kalra, James Crutchley, Asha Patel, Vinoj George and Chris Denning*

Bioessays 35: 281-298,© 2012 WILEY Periodicals, Inc.

<u>Muscle</u>

Duchene Muscular Dystroph Becker muscular dystrophy Hutchinson-Gilford progeria syndrome

<u>Metabolic</u>

Gaucher disease type III Lesch-Nyhan syndrome Juvenile Diabetes Type 2 diabetes Familial hypercholesterolemia Alpha1-antitrypsin deficiency Glycogen storage disease type 1a

<u>Immune</u>

Adenosine deaminase deficiencyassociated severe combined immunodeficiency (ADA-SCID) Multiple Sclerosis

Cardiovascular Diseases

Flavors of long QT syndrome CPTV LEOPARD syndrome Timothy Syndrome Diabetes

Haematological

Sickle cell anaemia b-Globin alleles Fanconi anaemia Acquired myeloproliferativedisordes b-Thalassaemia major (Cooley's anaemia)

Worlds Largest iPS Cell Research Repository

- California Institute for Regenerative Medicine (CIRM)
- Human iPS Cell Initiative 3 Awards (Total \$32M)
 - Sample Collection
 - iPS Cell Derivation
 - iPS Cell Banking

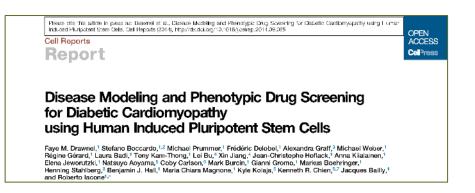
iPS Cell Derivation

- 3000 donors (healthy & disease phenotypes)
- 3 iPS cell clones per donor
- Disease categories: epilepsy, autism, cerebral palsy, cardiomyopathy, Alzheimer's disease, eye diseases, hepatitis (HCV), non-alcoholic steatohepatitis (NASH), pulmonary fibrosis
- Derived from peripheral blood (preferred) or skin fibroblasts
- Episomal "footprint-free" method

CDI – Coriell Partnership

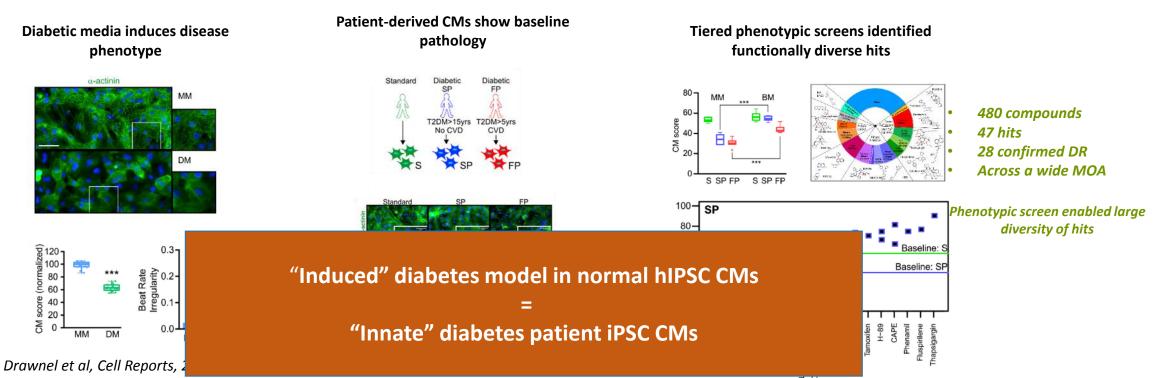
 Brings together expertise in electronic record-keeping, sample tracking, iPS cell derivation & characterization, cell banking & distribution

First few hundred samples available via Coriell's Website in September

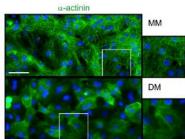


iCell and Patient-derived Cardiomyocytes in Drug Discovery

Drawnel et al, 2014 Cell Reports



•Diabetes causes pathological remodeling of cardiac muscle, which impairs heart function


 Diabetic media induces hallmarks of in vivo diabetic cardiomyopathy Sarcomeric disorganization, altered Ca²⁺ transients, cellular hypertrophy, lipid accumulation, oxidative stress, BNP release, gene expression

• iCell diabetic patient-specific CMs mimic diabetes

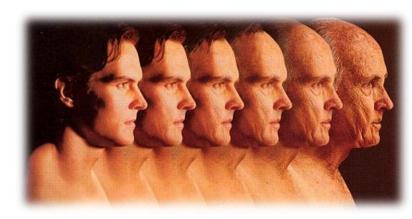
Severity dependent on their original clinical status

Diabetic media induces disease

8 120 100

80

ē 60 e 40 8 20 GM


CDI Therapeutics

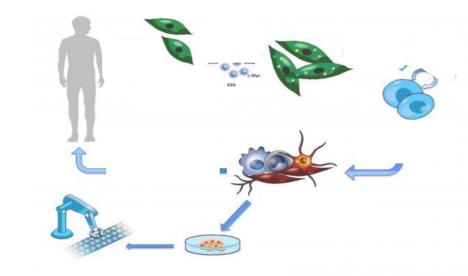
Why cell therapy?

- Many human diseases caused by loss of cells/function
- Traditional drugs do not replace cells or restore function
- Cell therapy offers a potential cure

Why CDI?

- Leverages our success in commercializing cells for the research market
 - Cell manufacturing expertise
 - iPSc bank of common HLA homozygous variants
 Tissue matching strategy for beneficial allogeneic therapy
 - Extensive KOL network
 - Active Programs
 - •DA Neurons
 - •RPE/PR
 - •CMs

iPS cell-derived Tissues and the Potential


• IPS-derived cells improvement over primary culture

- Amenable to genetic engineering
- Maturing phenotype
- Relevant disease models can be induced or derived

Improved functionality \rightarrow Ask better questions

Robust manufacturing a necessity

- iPS cells allow direct control over genetic diversity
 - Patient disease phenotype recapitulation in vitro
 - Retrospective clinical trials
 - Prospective clinical trials ?
- Clinical applications have potential to completely change medicine

M. Rossbac