

Hosted by:

The American College of Toxicology

Fundamental Approaches to Immunotoxicity Assessment in Preclinical Safety Studies

Presented by:

Adam Aulbach, DVM, DACVP Director of Clinical Pathology, MPI Research adam.aulbach@mpiresearch.com February 12, 2014

Overview

- Disclaimer: Not a comprehensive immunotoxicity discussion
 - Practical "weight-of-evidence" approach
 - When/how to apply additional testing
- Regulatory Guidance Overview ICH S8 (2006), FDA (2002)
- Utilizing parameters for Standard Toxicity Studies (STS)
 - Hematology, pathology, etc.
- Lymphocyte Subset Analysis (Immunophenotyping)
- T-cell Dependent Antibody Response Testing (TDAR)
 - Biologic validation of ELISA methods
- Translating into humans

ICH S8 Guidance 2006

- Most commonly followed
- Focused on immunosuppression and enhanced activation
 - "Standard toxicology study (STS) endpoints sufficient to identify the majority of immunotoxic effects"
 - "Weight-of-evidence" and case-by-case

STS Endpoints

- Hematology cytopenias, leukocytosis
- Gross, organ weight, and microscopic pathology of immune organs
 - Urgan weights, lymphoid depletion
- Serum biochemistry Jglobulins
- Tumor and infection incidence

ICH S8 Guidance

• Should include

- Statistical analysis
- Dose/exposure relationship
- Safety margin
- Changes that occur as secondary effects (e.g. stress, anorexia)
- Possible cellular or molecular targets/mechanisms
- Reversibility
- Is there potential impact on the immune system?
- Immune tissues or cells
- Increased incidence of infections/tumors

YES?

ICH S8 Guidance – Additional Points

Assay characterization and validation

- Standard validation required
 - Inter/intra assay precision and accuracy
 - Limit of detection (LOD)
 - Linear range
 (range of quantitation)
 - Stability
 - Robustness
 - Incorporation of positive controls

Not applicable to all assay types

Spirit of "fit-for-purpose" – IMPORTANT!

Interpretation of stress-related

changes

- "....evidence of stress should be compelling in order to justify not conducting additional immunotoxicity testing...."
- Do not over call stress!

FDA Guidance 2002

General Mention

- Use STS endpoints to determine if further testing warranted
- Same weight-of-evidence approach
- Examples, details, and references

Specific Mention

- PK studies indicate drug concentrates in immune tissues
- Suggests evaluation of developmental immunotox
 - 1. intended for pregnancy
 - 2. immunosuppression
- Inhalation and dermal studies
 - Sensitizing potential
- Adverse immunotoxicity vs. intended pharmacology

FDA Guidance 2002

5 adverse event categories

- Immunosuppression
 - Leukopenia, Jorgan weights, cell depletion, Jglobulins, infections
 - TDAR
 - Supports separate study of satellite animals
- Immunogenicity
- Hypersensitivity/allergic reactions
 - Specific examples of Type I, II, III, and IV
 - Extensive
- Autoimmunity
 - Examples, no standard methods
- Immunostimulation
 - STS and cytokines

ICH S8 and FDA Guidance

Additional testing – contingent upon results of STS parameters

- Functional and Non-functional
- TDAR (T-cell Dependent antibody response)
 - FDA separate study or satellite animals
 - ICH S8 include in STS
- Immunophenotyping of lymphocyte populations
- Natural Killer (NK) Cell Activity Assays In vitro
- Host resistance assays (pathogens or tumor cells)
- Neutrophil/macrophage functional Assays
- Cell-mediated immunity
 - Hypersensitivity/DTH

1st line

Standard Toxicology Study (STS) Endpoints

Immunosuppression

- Cytopenias (granulocytes and lymphocytes)
- Immune organ weight decreases
 - Lymph nodes, spleen, thymus
- Immune organ lymphoid depletion
 - Often correlates with circulating lymphocytes
- Bacterial sepsis, abscesses, pneumonia

Enhanced immune activation

- Leukocytosis, neutrophilia, left shift
 - No microscopic correlates
- Acute phase response (fibrinogen, CRP, etc.)
- Microscopic inflammation not associated with organ toxicity
 - E.g. catheter sites, injection sites

When to do Immunotoxicity Testing?

Other

- Anaphylaxis/hypersensitivity reactions
- Suspect autoimmune
 - Hemolysis ↓red cell mass, ↑TBIL, splenic EMH, ↑hemosiderin pigment
 - Thrombocytopenia (suspicious)
 - Vasculitis
- 1. Impact on immune tissues/cells
- 2. Increased infections
- 3. Mechanism of action
- 4. When they tell you to! (regulators)

Question – What first line Immunotoxicity assays do you incorporate into your preclinical studies?

- A. Standard lymphoid organ histopathology, weights, and hematology
- B. Immunophenotyping
- C. T-cell dependent antibody response (TDAR)
- D. Cytokine and/or acute phase protein evaluation
- E. In vitro cell activity assays (e.g. NK cell activity)
- F. 2 or more of the above

Immunosuppression vs. Stress

Hematology

- Lymphocytes most commonly affected
 - Stress not always dose dependent
 - Look for effects on neuts/eos

Pathology

- Immune organ effects
 - Thymus most sensitive
- Increases adrenal gland weights
 - Hypertrophy of zona fasicularis

Other

- Hyperglycemia
- Corticosteroid evaluations not fruitful?

	Epinephrine (Minutes)	Corticosteroid (Hours)	Overall
WBC	↑↑	↑	1
Neutrophils	$\uparrow\uparrow$	Ŷ	ſ
Lymphocytes	↑	\downarrow	Ļ
Eosinophils	-	\downarrow	\downarrow
Platelets	↑	-	-
RBC	Ŷ	-	-
RBC	\downarrow	-	- 12

Stress vs. Immunosuppression – Other Factors

Stress

- Often associated with overt toxicity
- ↓ Food consumption/body weight/clinical observations
- "Tends" to be less consistent/dose dependent
- Thymus most sensitive to stress

Immunosuppression

- Lymphoid effects reaching lower than other toxicity signals
- Likely to be direct effect if no thymic changes

Sometimes have both.....

• Immunotoxicity \rightarrow stress $\rightarrow \downarrow$ food consumption $\rightarrow \downarrow$ marrow and lymphoid cellularity

Guidance specifically addresses (ICH and FDA)

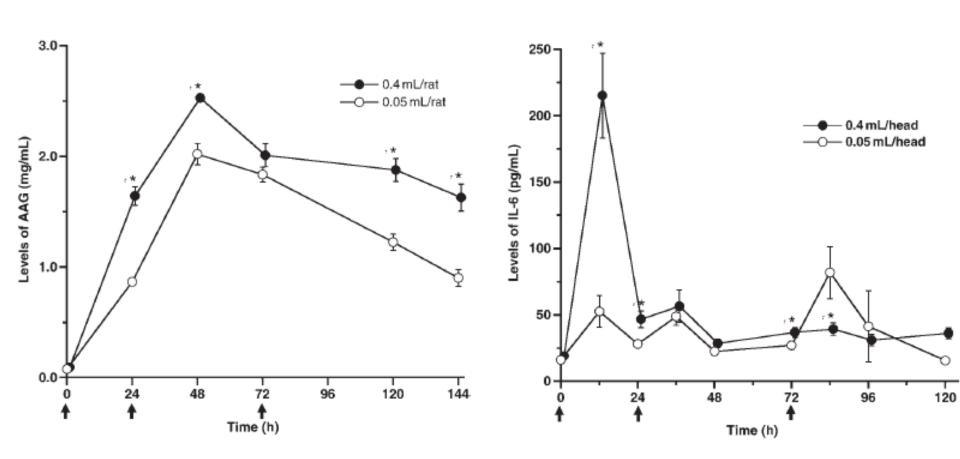
Markers of Enhanced Immune Activation

Acute Phase Proteins

- Non-specific markers of inflammatory cascade/process
- Most produced by liver in response to cytokine activation (IL-1, IL-6, etc.)
 - Hours to days
- Must use appropriate species specific markers
 - Fibrinogen (most)
 - C-reactive protein (NHP and canines)
 - A-2 macroglobulin (A2M), A-1 acid glycoprotein (AGP) (rats)
 - Haptoglobin and serum amyloid A (mice and swine)

Globulins

- Total and IgG, IgM, and IgE
 - Anaphylaxis
- Validated methods!


Markers of Enhanced Immune Activation

Cytokines

- Involved in cell-cell messaging
 - Many cells secrete lymphocytes, macrophages, dendritic/APCs
- Minutes to hours compound specific
- What good are they?
 - Elucidate mechanisms (pro and anti-inflammatory markers)
 - Cause or effect of inflammation?
 - Predictive early signs
- Luminex/multiplex panels
 - Methods not standardized assays generally not as tight as APPs
 - Validated methods!
- In vivo VS in vitro
 - In vitro most common, recommended for mechanistic studies
 - *In vivo* may not be representative TGN 1412

APPs vs. Cytokines (rats)

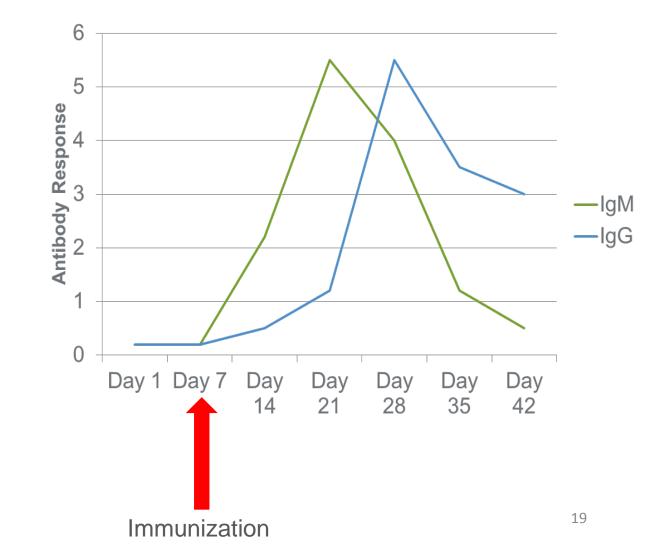
NHP Lymphocyte Immunophenotyping Panel

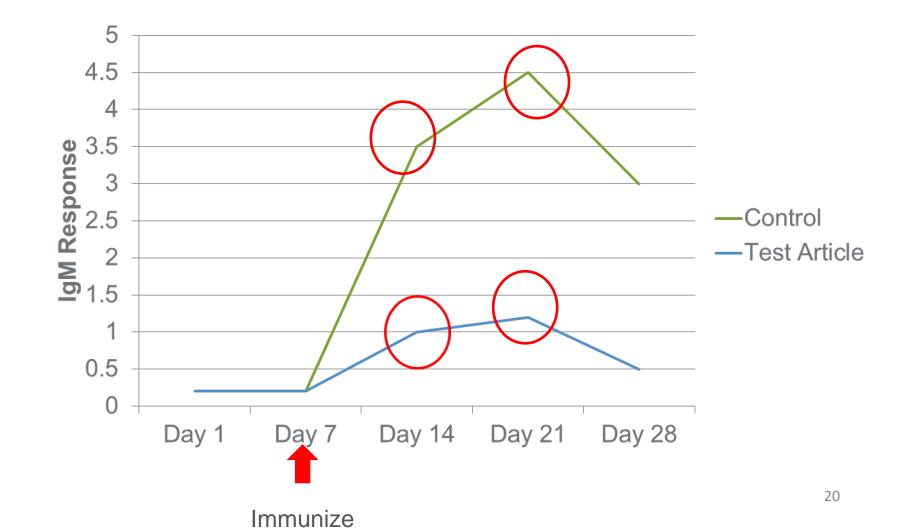
Immunophenotype	Antigen Markers	
Lymphocytes	CD45	
<u>T-cells</u>	CD45, CD3	
T _{helper} Cells	CD45, CD3, CD4	
T _{cytotoxic} Cells	CD45, CD3, CD8	
B-cells	CD45, CD20	
NK Cells	CD45, CD159a	
Regulatory T Cells	CD4, CD25, Foxp3	

Couple with hematology

TDAR Testing

T-cell Dependent Antibody Response


- Immune function assessment
 - Immunosuppression
- Ability to mount antibody response to standardized antigen challenge
 - Keyhole Limpet Hemocyanin (KLH)
 - Sheep Red Blood Cells (SRBC)
 - Tetanus Toxoid
- Coordinated activity of macrophages, T-helper cells, and B-cells
- Antigen-specific IgM followed by IgG responses
- Supplements hematology and lymphoid organ assessment
- Further studies required regarding mechanisms of dysfunction
- FDA vs EPA requirements


Classic TDAR Response

- IgM precedes IgG
- Isotype switching
- Peak Response
 - IgM 7-14d
 - IgG 14-21d
- Use to time sampling
- IgM will wane
- IgG may persist

Classic TDAR IgM Response

TDAR Testing in NHP Overview

Retrospective review of 30 studies in NHP

- No gender differences
- No country of origin differences NHP
- Most used KLH (87%), TT (34%), SRBC (12%)
- Substantial inter/intra-animal variability
- ≤ 4 animals/group only identifies large differences
 - Combine sexes for more power
- Some differences in magnitudes and timing of responses based on source (rat)

TDAR Testing Guidelines

General Considerations

- All animals can be immunized
 - Separate cohorts not typical
 - Immunization does not significantly impact other endpoints (generally)
- Wide individual variation
 - Individual immune response
 - Analytical methods
 - Minimum 4-6 animals/sex/group recommended combine sexes for statistics
- Immunization protocol and analysis should be consistent
 - Antigen source
 - Injection site SQ, IV, IM, footpad
 - Analytical methods lab to lab comparisons difficult
 - Prior viral exposure false positive reported

TDAR Testing

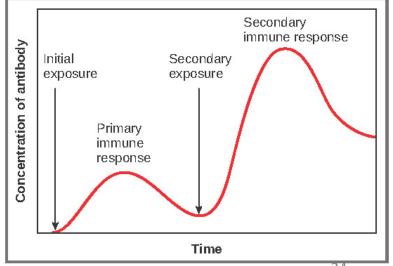
When to immunize?

- Compound dependent
 - Sufficient time to impact test system not only exposure
 - NOT Day1
 - 28 Day Studies Day 7 or 14
 - 13 Week Studies Day 21 or 28

When to draw samples for antibody levels?

- 2–4 times following immunization
- 7–14 days following immunization at 7 day intervals

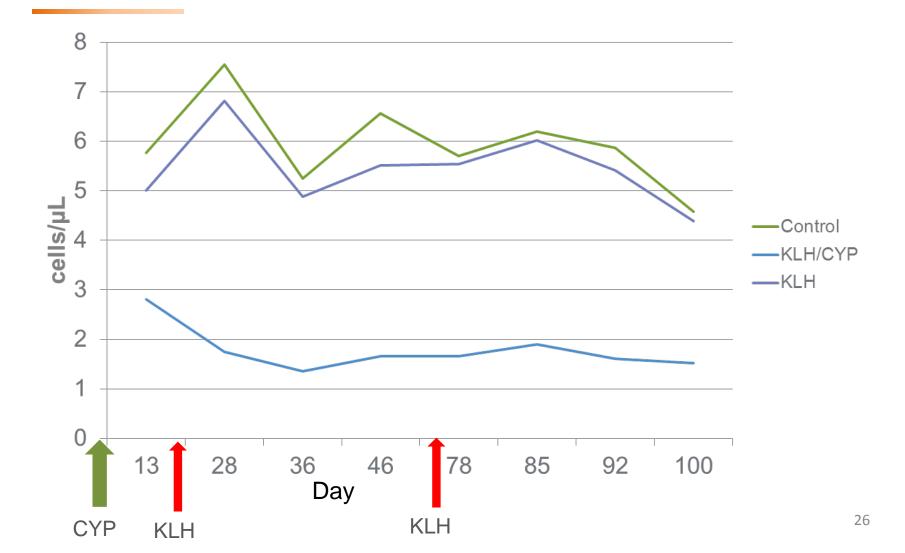
Do I need a positive control group?


Not required

TDAR Testing

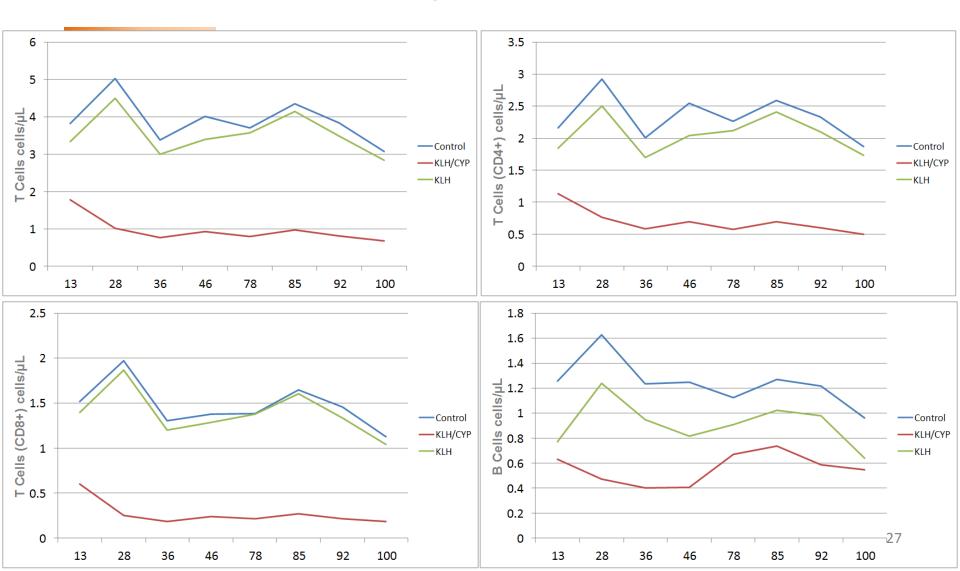
Recovery groups and secondary responses?

- Compound dependent
 - Must have knowledge of and account for multiple variables
 - Half life/exposure days to months
 - 30-45+ days for antibody response to subside
 - Test system resolution
 - Lymphoid repopulation etc.
 - Then re-immunize (secondary response)
 - Faster, more robust, longer
 - Altered dynamics (IgG>IgM)
- 13 Week + studies usually required



Biological Validation of ELISA Methods

- Cynomolgus monkeys
 - Control and positive control groups
 - 6/group/sex N=36
- Challenged KLH Day 21 and 71
 - Primary and secondary responses
 - 100 days
- Positive controls group (represents test compound)
 - Cyclophosphamide beginning Day 1
- Correlated with
 - Hematology
 - Immunophenotyping lymphocytes
 - Histopathology lymphoid organs



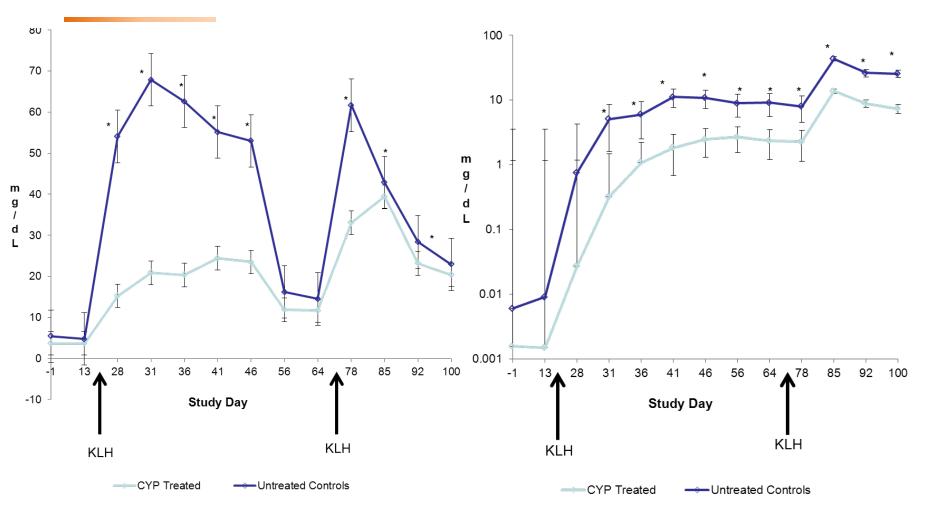
Lymphocyte Counts – Pooled Sexes

Immunophenotyping Results

Pathology – Organ Weights

Test Article-related Organ Weight Changes - Terminal Male and Female (Percent change relative to control)

Group:	KLH/CYP		KLH	
Sex	М	F	М	F
Number Examined	6	6	6	6
Spleen (g)	↓21.67ª	↓10.52	↓2.58	↓3.13
Thymus (g)	√62.51ª	↓61.25ª	↑7.30ª	↓12.21
^a Significantly different from Antigen 1 Vehicle; (p<0.05) ↑ - Increased ↓ - Decreased M – Male F – Female				



Microscopic Pathology

Test Article-related Microscopic Observations – Terminal						
Pooled Lymph Nodes						
(iliac, popliteal, inguinal, and mandibular)						
Group:	Со	ntrol	KLH	/CYP	K	LH
Sex	Μ	F	М	F	М	F
Number Examined	47	47	46	43	47	48
Lymph nodes (pooled)						
Depletion, lymphoid, generalized (minimal to mild)	0	0	7	6	0	3
Depletion, lymphoid, germinal center						
-minimal	0	0	0	0	1	0
Hyperplasia, lymphoid, germinal center						
-minimal	0	0	0	0	5	2
M – Male F – Female						

Anti-KLH IgM and IgG Responses

Effects of Reduced Leukocytes

When do reductions actually adversely impact immune function?

• Humans (>40% ↓ lymphocytes; >75% ↓ in granulocytes)

Adversity subjective

Rely on clinical evidence – infections etc.

No consistent guidance for animal studies

• Neutrophils <1000 cells/µL

Effects of Reduced Lymphocytes on TDAR

% Change in Cyclophosphamide Treated Relative Controls 7 days post Immunization

	Day 28	Day 78
Lymphocytes	-74% a	-70% a
T Cells	-77% a	-78% ^a
CD4+	-70% ^a	-73% ^a
CD8+	-87% ^a	-84% ^a
B Cells	-62%	-27%)
NK Cells	-92% ^a	-87% ^a
KLH IgM	-72% ^a	-46% ^a
KLH lgG	-84% ^b	-60% ^a
^a significant at (p<0.01) ^b significant at (p<0.05)		

NHP Conclusions KLH

- Primary (D21) and secondary (D71) immunizations resulted in statistically significant increases in Anti-KLH IgM and IgG within 7-14 days post immunization
- Intermittent cyclophosphamide (CYP) dosing resulted in significant reductions in total lymphocytes and most lymphocyte subtypes as detected by flow cytometry
- Animals dosed with CYP had significant decreases in Anti-KLH IgM and IgG relative to immunized control animals indicating
- Detection of a compound-related reduction in immune function by these methods

Translating into Man

- Basic structure of immune systems similar
 - Lymphoid tissues, leukocytes, innate, acquired, humoral
- Species-specific variants
 - Antibody responses
 - Antigenic markers
- NHP often the only relevant species based on antibody cross reactivity with human target proteins
 - Share significant genetic homology
 - Immunoassay cross reactivity
- ICH S6 acknowledges antibody induction in animals not predictive of antibody formation in man

Translating into Man - Examples

Similarities

- Innate immunity dendritic cell subsets in rhesus monkeys
 - myeloid (CD11c+/CD123^{neg}) and plasmacytoid (CD11c-/CD123⁺)
 - cytokine responses similar
 - DC TLR expression same as human; different from mice

Differences

- TGN 1412
 - CD28 superagonist expressed on human but not NHP T-cells
 - Led to "cytokine storm" in 6 human volunteers near fatal
 - Recommend *in vitro* human studies in cases with mechanistic relations

Conclusions

- Guidance supports weight-of-evidence case-by-case strategy for inclusion of immunotoxicity testing
- Considerations for species, stress, related mechanisms, pharmacology dictate a case-by-case approach
- STS endpoints drive
 - Lymphoid organ effects
 - Leukocyte effects
 - Inflammatory biomarkers
 - Infection incidence
- First Tier
 - TDAR (T-cell Dependent Antibody Response)
 - Lymphocyte Immunophenotyping
 - Acute phase protein and cytokines
- Validated and well-characterized methods
 - Immunization protocols
 - Ligand-binding assays

References

- Everds NE, Snyder PW, Bailey BB, Creasy DM, Foley GL, Rosol TJ, Seller T. Interpreting stress responses during routine toxicity studies: a review of the biology, impact, and assessment. *Tox Path* 41(4):560-614, 2013.
- United States Food and Drug Administration, Center for Drug Evaluation and Research (CDER) Guidance for Industry. Immunotoxicology Evaluation of Investigational New Drugs, 2002.
- Gore ER, Gower J, Kurali E, Sui JL, Bynum J, Ennulat D, Herzyk DJ. Primary antibody response to keyhole limpet hemocyanin in rat as a model for immunotoxicity evaluation. *Toxicology* 197:23-35, 2004.
- ICH Harmonised Tripartite Guideline: Immunotoxicity studies for human pharmaceuticals S8, 2006.
- Lebrec H, Hock MB, Sundsmo JS, Mytych DT, Carlock LL, Joubert MK, Reindel J, Zhou L, Bussiere JL. T-cell-dependent antibody responses in the rat: Forms and sources of keyhole limpet hemocyanin matter. *J Immunotoxicol* Early online 1-9, 2013.
- Lebrec H, Cowan L, Lagrou M, Krejsa C, Neradilek MB, Polissar NL, Black L, Bussiere J. An interlaboratory retrospective analysis of immunotoxicological endpoints in non-human primates:T-celldependent antibody responses. *J immunotoxicol* 8(3):238-250, 2011.
- Messaoudi I, Estep R, Robinson B, Wong S. Nonhuman primate models in human immunology. *Antioxid Redox Signal* 14(2):261-273, 2011.
- Piccotti J, Alvey JD, Reindel JF, Guzman RE. T-cell-dependent antibody response: Assay development in cynomolgus monkeys. *J Immunotoxicol* 2:191-196, 2005.