Animal Models of Disease for Nonclinical Safety Assessment: Pharmaceutical Industry Survey

Sherry J. Morgan, DVM, PhD Diplomate ACVP, ABT, ABVT Senior Research Fellow AbbVie, Inc. sherry.j.morgan@abbvie.com

How Close Are We to Predicting Clinical Adverse Drug Reactions?

- Conventional toxicology studies identify the majority, but not all adverse drug reactions (ADRs) noted in the clinics
 - Olson et al. (2000): Concordance of the toxicity of pharmaceuticals in humans and in animals. *Reg Tox Pharm* 32:56-67

Less Predictable Toxicities

Cutaneous

Neurological

Hepatobiliary

More Predictable Toxicities

Hematologic

Gastrointestinal

Cardiovascular (Note: some publications indicate low predictability for CV)

- Goal optimize predictability
 - In some instances, this may include evaluation of compounds in animal models of disease
 - Particularly for those toxicities that may be serious and not readily monitored
 - Not all toxicities will or can be predicted, even with animal models

What Do We Know About the Toxicities of "Low" Predictability?

- Low predictability anticipated because of receptors/mode of action of molecule
 - Target not expressed in conventional animal models (CAMs)
 - Molecule not well tolerated in CAMs due to physiology (e.g., antihypertensive compound in normotensive animal) – cannot dose very high
- Low predictability anticipated because of toxicity in CAM and/or human
 - Inherent low predictability of organ system
 - Inherent low predictability of particular toxicity within an organ system

Non-Oncology Adverse Clinical Drug Reactions (ADRs)

Organ System/Effect	Most Common	Somewhat Common	Less Common
Gastrointestinal	Х		
Hepatobiliary	Х		
Neurological	Х		
Hematologic		X	
Cardiovascular		Х	
Cutaneous		Х	
Ocular			Х
Respiratory			Х
Musculoskeletal			Х
Infection			Х
Application Site Rxn			Х

Olson et al. (2000): Concordance of the toxicity of pharmaceuticals in humans and in animals.. Reg Tox Pharm 32:56-67

Tamaki et al. (2013): Potentials and limitations of nonclinical safety assessment for predicting clinical adverse drug reactions: correlation analysis of 142 approved drugs in Japan, *J Tox Sci* 38(4):581-598

Non-Oncology ADRs: Prediction From Nonclinical Moderate-High Incidence + Low Prediction – Liver, Neuro, CV, Skin

Organ System/Effect	Most Common	Somewhat Common	Low Predictability	High Predictability
Gastrointestinal	Х			X
Hepatobiliary	X		X	
Neurological	Х		X	
Cardiovascular		X	X	
Cutaneous		X	X	
Hematologic		Х		
Ocular				Х
Respiratory			Х	
Musculoskeletal			Х	
Infection				Х
Application Site Rxn				Х

Olson et al. (2000): Concordance of the toxicity of pharmaceuticals in humans and in animals.. Reg Tox Pharm 32:56-67

Tamaki et al. (2013): Potentials and limitations of nonclinical safety assessment for predicting clinical adverse drug reactions: correlation analysis of 142 approved drugs in Japan J Tox Sci 38(4):581 598 American College of Toxicology Webinar series

Oncology Adverse Clinical Drug Reactions (ADRs)

Organ System/Effect	Most Common	Somewhat Common	Less Common
Infection	Х		
Nausea/vomiting	Х		
Febrile neutropenia	X		
Anemia		Х	
Mucositis		X	
Diarrhea		Х	
Thrombocytopenia			Х
Peripheral neuropathy			Х
Constipation			Х
Hepatobiliary			Х

Sharma et al. (2015): Pattern of adverse drug reactions due to cancer chemotherapy in a tertiary care hospital. *Perspect Clin Res* 6(2):109-115

Oncology ADRs: Prediction From Nonclinical Superior Prediction vs. Non-Oncology – More Common ADRs?

Organ System/Effect	Most Common	Somewhat Common	Less Common	High Predictability	Low/Moderate Predictability
Infection	X			X	
Nausea/vomiting	X			X	
Febrile neutropenia	X			X	
Anemia		Х		Х	
Mucositis		Х			Х
Diarrhea		X		Х	
Thrombocytopenia			Х	X	
Perip. neuropathy			Х		Х
Constipation			Х		Х
Hepatobiliary			Х		Х

Sharma et al. (2015): Pattern of adverse drug reactions due to cancer chemotherapy in a tertiary care hospital. *Perspect Clin Res* 6(2):109-115

Schein et al. (1970): The evaluation of anticancer drugs in dogs and monkeys for the prediction of qualitative toxicities in man. Clin Pharm Ther 11(1):3-40

ADRs and Prediction from Nonclinical Is There Variation in Predictability Within Organ System Findings?

Overall Predictability	Organ System	Individual Findings: Low Predictability	Individual Findings: High Predictability
	Hepatobiliary	?	?
Lower	Neurological	?	?
Predictability (< 60%)	Cardiovascular	?	?
	Cutaneous	?	?
Higher	Hematological	?	?
Predictability (> 60%)	Ocular	?	?
(> 00%)	Gastrointestinal	?	?

Tamaki et al. (2013): Potentials and limitations of nonclinical safety assessment for predicting clinical adverse drug reactions: correlation analysis of 142 approved drugs in Japan. *J Tox Sci* 38(4):581-598

ADRs and Prediction from Nonclinical Is There Variation in Predictability Within Organ System Findings?

Overall Predictability	Organ System	Individual Findings: Low Predictability	Individual Findings: High Predictability
	Hepatobiliary	<u>Bilirubin, ALP,</u> LDH	Transaminases (esp. AST)
Lower	Neurological	<u>Fatigue, headache,</u> <u>dizzy</u>	Somnolence, dyskinesia
Predictability (< 60%)	Cardiovascular	↑ Blood pressure	\downarrow Blood pressure
	Cutaneous	Urticaria, alopecia, eczema, rash, itching	Erythema
Higher	Hematological		
Predictability (> 60%)	Ocular		
(> 0070)	Gastrointestinal		

Tamaki et al. (2013): Potentials and limitations of nonclinical safety assessment for predicting clinical adverse drug reactions: correlation analysis of 142 approved drugs in Japan. *J Tox Sci* 38(4):581-598

ADRs and Prediction from Nonclinical Is There Variation in Predictability Within Organ System Findings?

Overall Predictability	Organ System	Individual Findings: Low Predictability	Individual Findings: High Predictability
	Hepatobiliary	<u>Bilirubin, ALP</u> , LDH	Transaminases (esp. AST)
Lower	Neurological	<u>Fatigue, headache,</u> <u>dizzy</u>	Somnolence, dyskinesia
Predictability (< 60%)	Cardiovascular	↑ Blood pressure	\downarrow Blood pressure
	Cutaneous	Urticaria, alopecia, eczema, rash, itching	Erythema
Higher	Hematological	Eosinophil or WBC \uparrow	RBC \uparrow/\downarrow or WBC \downarrow
Predictability	Ocular		
(> 60%)	Gastrointestinal	<u>Amylase</u> increases	Fecal changes, emesis, decreased appetite

Tamaki et al. (2013): Potentials and limitations of nonclinical safety assessment for predicting clinical adverse drug reactions: correlation analysis of 142 approved drugs in Japan. *J Tox Sci* 38(4):581-598

So – What Do We Know About Use of Animal Models of Disease (AMDs) to Help in Prediction?

- Low predictability anticipated because of receptors/mode of action of molecule
 - Target not expressed in conventional animal models (CAMs)
 - Molecule not well tolerated in CAMs due to physiology (e.g., antihypertensive compound in normotensive animal) – cannot dose CAM very high
 - AMD may well be very helpful
- Low predictability anticipated because of nature of toxicity in CAM and/or human
 - Inherent low predictability of organ system
 - Inherent low predictability of particular toxicity within an organ system
- Utility of AMD depends on pathogenesis of toxicity e.g., may be helpful to utilize chimeric mouse with "humanized liver"

Literature References/Guidances and AMD Use – What is Available?

- Pharmacology/efficacy
- Safety
 - Discovery
 - Development
- Recommendations/regulatory

Animal Models of Human Disease – Pharmacology/Efficacy Examples of Publications at Survey Initiation.... "Endless"

- Fleet, J.C. (2014): Animal models of gastrointestinal and liver diseases. New mouse models for studying dietary prevention of colorectal cancer. Am. J. Physiol. *Gastrointest Liver Physiol* 307:G249–G259
- Islam MS (2013) Animal models of diabetic neuropathy: Progress since 1960s. J Diabetes Res 2013:1-9
- Jay GW, DeMattos RB, Weinstein EJ, Philbert MA, Pardo ID, Brown TP (2011). Animal models for neural disease. *Tox Pathol* 39:167-169
- Mizoguchi, A. (2012). Animal models of inflammatory bowel disease. Prog Mol Biol Transl Sci 105:263–320
- Rosenberg DW, Giardina C, Tanaka T. (2009). Mouse models for the study of colon carcinogenesis. *Carcinogenesis*. 30(2):183-196
- Rubio-Viqueira B, Hidalgo M. (2009). Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. *Clin Pharmacol Ther.* 85: 217-221
- Talmadge JE, Singh RK, Fidler IJ, Raz A. (2007). Murine models to evaluate novel and conventional therapeutic strategies for cancer. *Am J Pathol*. 170: 793-804
- Ward JM, Treuting PM. (2014). Rodent intestinal epithelial carcinogenesis: pathology and preclinical models. *Toxicol Pathol*. 42(1):148-61

Animal Models of Human Disease – Safety Examples of Publications at Survey Initiation.... "Several"

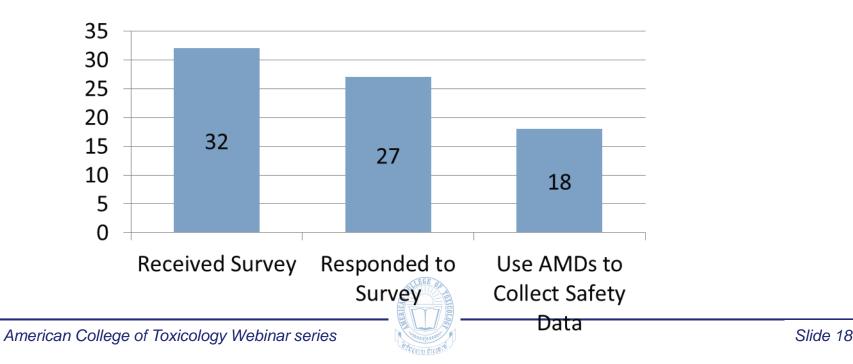
- Bolon, B. and Galbreath, E. (2002). Use of genetically engineered mice during discovery and development: Wielding Occam's razor to prune the product portfolio. *Int J Toxicol* 21(1): 55-64
- Cordaro, C.J. (1989). Transgenic mice as future tools in risk assessment. *Risk Anal* 9(2):157-168
- Murray, J.M., Thompson, A.M., Vitsky, A., Hawes, M., Chuang, W.L., Pacheco, J., Wilson, S, et al. (2015). Nonclinical safety assessment of recombinant human acid sphingomyelinase (rhASM) for the treatment of acid spingomyelinase deficiency: the utility of animal models of disease in the toxicological evaluation of potential therapies. *Mol Genet Metab* 114(2):217-225
- Ozaki, K., Sano, T., Tsuji, N., Matsuura, T., Narama, I. (2010). Insulin induced hypoglcemic peripheral motor neuropathy in spontaneously diabetic WBN/Kob rats. *Comp Med* 60(4):282-287
- Racke, M. M., Boone, L.I., Hepburn, D.L., Parsadaiaian, M., Bryan, M.T., Ness, D.K., Piroozi, K.S., et al. (2005). Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid β. *Neurobiol Dis* 25(3):629-636

Animal Models of Human Disease – Recommendations/Regulations Examples of Publications at Survey Initiation....Limited

- Cavagnaro, J. and Silva Lima, B. (2015). Regulatory acceptance of animal models of disease to support clinical trials of medicines and advanced therapy of medicinal products. *Euro J Pharmacol* 759: 51-62
- Morgan, S.J., Elangbam, C.S., Berens, S., Janovitz, E., Vitsky, A., Zabka, T., Conour, L. (2013). Use of animal models of human disease for non-clinical safety assessment of novel pharmaceuticals. *Toxicol Pathol* 41(3):508-518
- U.S. FDA (2015). U.S. Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry: Investigational Enzyme Replacement Therapy Products: Nonclinical Assessment <u>https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/G</u> uidances/UCM446569.pdf
- U.S. FDA (2016). U.S. Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry: Osteoporosis: Nonclinical Evaluation of Drugs Intended for Treatment <u>https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/G</u> uidances/UCM455102.pdf

Animal Models of Human Disease – Overview of Industry Use Examples of Publications at Survey Initiation....None

- So how about a survey to see what "real life" is like?
 - Innovation and Quality (IQ) Consortium focus group developed a survey to determine practices and perceptions across companies
 - Survey queried utilization of animal models of disease (AMDs) in discovery (typically non-GLP studies) and development (typically GLP studies)
- Assumptions based on available literature information
 - AMDs in efficacy/pharmacology is widespread
 - AMDs for collection of safety information
 - Tag-on to efficacy/pharmacology/discovery studies or stand-alone studies – some use but distribution/frequency unknown

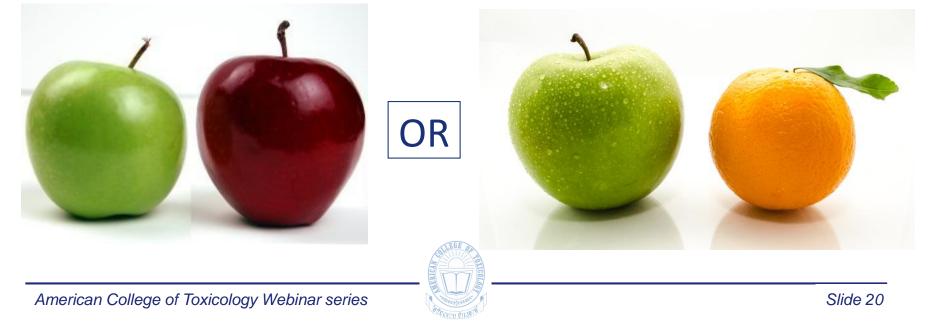

Survey Focus Group Team Members

- Jessica Couch Genentech
- Peggy Guzzie-Peck Janssen Research and Development, LLC
- Thomas Jones Eli Lilly and Company
- Douglas Keller Sanofi
- Ray Kemper Vertex, Inc.
- Sherry Morgan AbbVie, Inc.
- Monicah Ontieno Janssen Research and Development, LLC
- Robert Schulingkamp Bristol-Myers Squibb Company (currently at Johnson and Johnson Research and Development, LLC)

Survey Plan/Methods

- Cross company survey conducted by Innovation and Quality (IQ) Consortium group (DruSafe – Preclinical Safety Leadership Group within the IQ)
- Survey included queries on experience with AMDs, types of models, frequency, timing, motivation for use
- Survey distribution/response

Invited Survey Participants – 32 Members of DruSafe

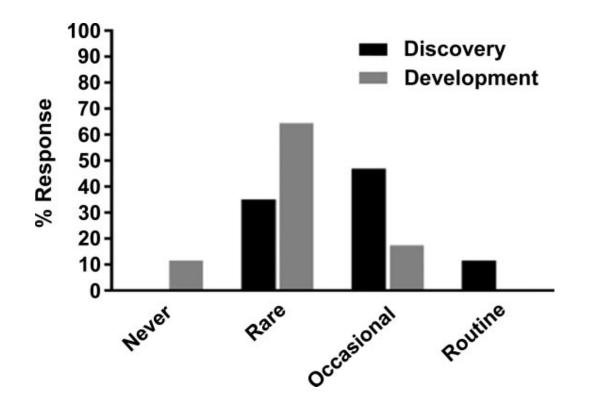

AbbVie, Inc. Eisai, Inc. Agios Eli Lilly and Company **Alexion Pharmaceuticals Gilead Sciences** Alkermes **Glaxo SmithKline** Allergan **Incyte Corporation** Amgen, Inc. Infinity Pharmaceuticals Astellas Pharma U.S., LLC Janssen Research and Development, LLC Astra Zeneca Pharmaceuticals Merck and Co. **Baxter Healthcare Novartis Bayer Healthcare** Pfizer Biogen **Roche/Genentech Blueprint Medicines** Sanofi **Boehringer Ingelheim** Sunovion **Bristol-Myers Squibb Company** Takeda Celgene Corporation Daiichi Sanyo **Teva Pharmaceuticals** Daiichi Sankyo Vertex, Inc

Results of Survey – How Well Were They Predicted by Previous Recommendation Publication?

 Survey Manuscript: Morgan, S.J., Couch, J, Guzzie-Peck, P., Keller, D.A., Kemper, R., Otieno, M.A., Schulingkamp, R.J., Jones, T.W. (2017): Regulatory Forum Opinion Piece: Use and Utility of Animal Models of Disease for Nonclinical Safety Assessment: A Pharmaceutical Industry Survey. *Toxicol Pathol* 45(3):372-380

VS.

Predictions/Recommendations Manuscript: Morgan, S.J., Elangbam, C.S., Berens, S., Janovitz, E., Vitsky, A., Zabka, T., Conour, L. (2013). Use of animal models of human disease for non-clinical safety assessment of novel pharmaceuticals. *Toxicol Pathol*


Divide Comparison into "Predictions" and "Recommendations"

- Expectations
 - Discovery vs. development more common use
 - Therapeutic areas
 - Types of AMDs
- Recommendations
 - Use of CAMs vs. AMDs when and why
 - Consider critical steps and risk:benefit before using AMDs
 - AMDs should be used for hazard ID/understanding and to answer specific question/hypothesis

How Well Did Predictions Reflect Current Practice?

Prediction: AMDs will be utilized more frequently in discovery vs. development

Morgan et al. (2017): Regulatory Forum Opinion Piece: Use and Utility of Animal Models of Disease for Nonclinical Safety Assessment: A Pharmaceutical Industry Survey . *Toxicol Pathol* 45(3):372-380

How Well Did Predictions Reflect Current Practice?

Prediction: AMDs will involve both naturally occurring and "induced" models and may be of benefit across a variety of therapeutic areas

% Response

Morgan et al. (2017): Regulatory Forum Opinion Piece: Use and Utility of Animal Models of Disease for Nonclinical Safety Assessment: A Pharmaceutical Industry Survey. *Toxicol Pathol* 45(3):372-380

How Well Did Predictions Reflect Current Practice?

Prediction	Survey Results
Limitations of AMD in nonclinical safety	
testing include:	Most frequent concern: lack of
Lack of historical control	confidence in the models and/or
Heterogeneity in disease expression	ability for decision-making
Limited life span	
Confounding effects of the disease	

Recommendations for Use	Survey Results for Use	
• CAMs should continue to be utilized to further elucidate safety risks that were identified in earlier studies	 AMDs more commonly utilized to supplement, rather than replace CAMs in development Most common use was as predicted – enhanced AMD study/record safety endpoints in AMD study 	
Dedicated AMD in Absence of Standard Tox Development Dedicated AMD to Supplement Standard Tox		
Enhanced	AMD study	
Record Safety Endpoi	nts in AMD	

% Response

Morgan et al. (2017): Regulatory Forum Opinion Piece: Use and Utility of Animal Models of Disease for Nonclinical Safety Assessment: A Pharmaceutical Industry Survey. *Toxicol Pathol* 45(3):372-380

	Recommendations for Use	Survey Results for Use (Most to Least Frequent)
•	AMDs should be reserved as an adjunct to answer	To assess potential safety concerns early prior to conduct of toxicology studies
	specific hypothesis-driven questions as it pertains to safety assessment	To de-risk or understand safety issues that may be masked by excessive pharmacology in traditional toxicology models or when target is only expressed in the disease state
•	AMDs in safety testing should be focused on hazard identification/understandi	To address target or program-specific concerns that important safety issues may be missed if data were collected only using CAM
	ng rather than safety margin calculation	To de-risk or understand a known clinical safety issue missed by traditional nonclinical safety models

-	Recommendations for Use	Survey Results for Use (Most to Least Frequent)
•	AMDs should be reserved as an adjunct to answer specific hypothesis-driven questions as it pertains to	To de-risk or understand safety issues that may be masked by excessive pharmacology in traditional toxicology models or when target is only expressed in the disease state
•	safety assessment AMDs in safety testing	To address target or program-specific concerns that important safety issues may be missed if data were collected only using CAM
	should be focused on hazard identification/understand ing rather than safety margin calculation	Request from a global regulatory authority
		To de-risk or understand a known clinical safety issue missed by traditional nonclinical safety models

Recommendations for Use	Survey Results for Use (Most to Least Frequent)
A rigorous risk:benefit assessment of the appropriateness of the AMD and its intended use in preclinical drug development is paramount to success	 Not directly answered, but while some had mixed results, most respondents indicated that use of AMD during development achieved their intended purpose Responses from regulatory authorities generally favorable

Recommendations for Use		Survey Results for Use (Most to Least Frequent)
Critical steps prior to consideration of the	•	Characterized prior to use, mostly to confirm disease phenotype
AMD include:Determination of	•	Robust information on historical controls generally not available
the degree of homogeneity with	•	In some cases, thorough characterization of AMD prior to conduct of definitive studies provided
respect to the human disease		information on inherent model variability and was useful toward interpretation of toxicity endpoints
Rigorous characterization of	•	In other cases, weight-of-evidence approach taken to interpret data, with consideration given to inter-
the AMD		animal variability within a study

Focus Team's Initial Considerations of AMDs – Limitations and Uses

Consideration	Comments		
Limitations	Lack of consistent concordance between AMD and human disease		
	Lack of well-characterized toxicology/pathology information in AMDs vs. conventional animal model (CAM)		
Potential useful applications	More robust evaluation of toxicity when intended pharmacologic effect results in significant dose-limiting toxicity at low multiples in CAM		
	Differentiation of on- vs. off-target effect (e.g., is peripheral neuropathy a manifestation of hypoglycemia rather than off- target effect)		
	Evaluation of target toxicity when target is not expressed in CAM		
	Follow-up investigation of unexpected toxicity in clinical investigations when not present in CAM		

Overview of Results – Discovery vs. Development

- AMDs primary use is in discovery:
 - Proactive assessment of potential safety issues prior to conduct of toxicology studies
 - Better understanding of toxicities associated with exaggerated pharmacology in traditional models
 - De-risk issues when the target is only expressed in the disease state
- •AMDs less frequently used in development:
 - Investigate nonclinical safety issues associated with targets expressed only in disease states and/or in response to requests from regulatory authorities

Overview of Results – Common Themes

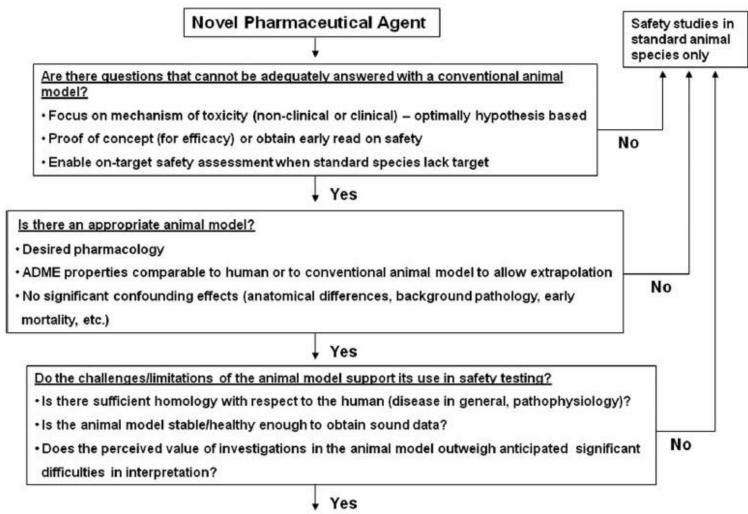
- Optimize early data gathering and issue/hazard identification
- Prospective approach to nonclinical safety assessment
 - Target is not expressed
 - Secondary effects associated with target engagement will not occur in the absence of disease state
- Support requests/recommendations from regulatory authorities and/or internal medical exerts
- Support follow-up investigations where evaluations with CAMs failed to demonstrate toxicity signals that were identified in a clinical setting

Acknowledgements

- Jessica Couch Genentech
- Peggy Guzzie-Peck Janssen Research and Development, LLC
- Thomas Jones Eli Lilly and Company
- Douglas Keller Sanofi
- Ray Kemper Vertex, Inc.
- Monicah Ontieno Janssen Research and Development, LLC
- Robert Schulingkamp Johnson and Johnson Research and Development, LLC (at Bristol-Myers Squibb Company at time of survey)

Questions?

Disclosures


• This presentation was sponsored by AbbVie. AbbVie contributed to the writing, reviewing, and approving the publication. Sherry Morgan is an employee of Abbvie.

BACKUPS

Use of Animal Model of Disease Consideration: Salient Features

Consider use of animal model of disease

Morgan et al. (2013): Use of Animal Models of Human Disease for Nonclinical Safety Assessment of Novel Pharmaceuticals. *Toxicol Pathol* 41, 508-518